Ə.Ə.Hüseynov, M.İ.Seyidov, V.M.Məmmədov

QRAFLAR NƏZƏRİYYƏSİ

Dərs vəsaiti

Azərbaycan Dövlət Neft və Sənaye Universiteti təşdiq etmişdir
Əmr №01-I/18
13 iyun 2018-ci il

Bakı – 2018
Redaktor:

A.R.Əliyev, Azərbaycan Dövlət Neft və Sənaye Universitetinin "Ümumi və tətbiqi riyaziyyat" kafedrasının müdərə, riyaziyyat üzrə elmlər doktoru, professor

Rəyçilər:

K.B.Ənsimov, AMEA İdarəetmə Sistemləri İnstitutunun laboratoriyası müdərə, riyaziyyat üzrə elmlər doktoru, professor

V.M.Əbdullayev, Azərbaycan Dövlət Neft və Sənaye Universitetinin "Ümumi və tətbiqi riyaziyyat" kafedrasının professoru, riyaziyyat üzrə elmlər doktoru

Ə.Ə.Hüseynov, M.İ.Seyidov, V.M.Əmmədov
Qraflar nəzəriyyəsi. Dörs vəsaiti
Baki, 2018, 236 səh.

Dörs vəsaitində qrafin əsas anlayışları, qrafların izomorfoluq, homeomorf qraflar, qrafın hissələri, altqraflar, qismən qraflar, qraflar üzərində qəmələr, marşrutlar, zəncərlər, təsiklər, yollar, konturlar, əlaqəli qraflar, məhələdən əlaqəli qraflar, qrafarda məsafə xarakteristikaları, qrafarda ekstremal məsələlər və onların əhal üsulları, istiqamətlənməsi qrafın tərədlərinin və təllərinin nizamlanması, ağac qraflar, qraf üzərində qəzinti, vektor-təsiklər, bazis təsiklər, təsiklərin fundamental sistemi, qrafın asılı olmuyan və dominant tərəflər çoxluluqları, qrafların rənglənməsi, qrafların diferensiallanması, müstəvi qraflar, şəbəkədə ekstremal axın məsələlərini məşqulərin əsrə edilmədikdər.

Vəsait "Kompiyuter elmlər" ixtisasının üzrə təhsil alan tələbələr və bu sahədə çalışan müxtəlif peşə sahibləri üçün nəzərə tutulmuşdur.

©«Təhsil» EİM,
© Ə.Ə.Hüseynov, M.İ.Seyidov,
V.M.Əmmədov, 2018
Mündəricat

Giriş ... 6
1. Qraf. Qrafın bir sıra ilkin anlayışları .. 8
 1.1. Qrafın verilməsi üsulları .. 13
Çalışmalar 1 ... 18
2. Qrafların izomorfluluğu. Homeomorf qraflar .. 21
 2.1. Qrafların izomorfluğu .. 21
 2.2. Homeomorf qraflar ... 25
Çalışmalar 2 ... 25
 3.1. Altqraflar. Qismən qraflar (suqraflar) ... 28
 3.2. Qraflar üzərində əməllər ... 29
Çalışmalar 3 ... 35
 4.1. Qrafların uzunluqlu marşrutlarının sayının aşkar edilməsi 40
Çalışmalar 4 ... 43
5. Əlaqəli qraflar. Möhkəm əlaqəli qraflar ... 46
 5.1. Qrafın maksimal möhkəm əlaqəli altqrafların ayırılışı 48
 5.2. Qraf hissələrə ayırılan əpələr və tillər. Bloq qraflar. Əpəyə və tilə görə əlaqəlilik 63
Çalışmalar 5 ... 65
6. Qraflarda məsafə xarakteristikaları ... 70
Çalışmalar 6 ... 73
7. Qraflarda ekstremal məsələlər və onların əll üsulları ... 75
 7.1. Qraflarda ekstremal yolların tapılmasına üçün Şimbell üsulu 75
7.2. Qraflarda ən qışa yolların Deykstra alqoritmi ilə tapılması ... 78
7.3. Qraflarda ən qışa yolların tapılması üçün Bellman-Mur alqoritmi .. 84
Çalışmalar 7 .. 93
8. İstiqamətlənmış qrafın təpələrinin və tillərinin Falkerson alqoritmi ilə nizamlanması 104
8.1. Maksimal yolun tapılması alqoritmi 108
Çalışmalar 8 .. 111
9. Ağac (şəcərə) qraflar ... 119
9.1. Çəkili qraflarda optimal ağac qrafların axtarılmasının məsələləri. Prim və Kraskal alqoritmləri ... 125
10. Qraf üzərində gezinti ... 131
10.1. Eyler qrafı. Eyler zənciri və tsikli 131
10.2. Hamilton zənciri və tsikli 135
Çalışmalar 10 .. 138
11.2. Tsikllərin fundamental sistemi və tsiklik ranq ... 147
Çalısmalar 11 .. 150
12. Qrafın asılı olmayan və dominant təpələr çoxluqları ... 153
12.1. Qrafın asılı olmayan təpələr çoxluğu. Qrafın daxili dayanıqlıq edədi .. 153
12.2. Qrafın üstünlük təskil edən (dominant) təpə-lər çoxluğunu. Qrafın xarici dayanıqlılıq ədədi 158
12.3. Qrafın nüvəsi və onun xassələri 161
Çalışmalar 12 ... 164
13. Qrafların rənglənməsi. Qrafın xromatik ədədi ... 170
13.1. Qrafın xromatik ədədinin Maqu üsulu ilə tapılması ... 171
13.2. Qrafın ardıcıl rənglənməsi alqoritmi 175
13.3. Qrafın "qruplaşmış" (bir-birindən ciddi əsil) təpələr çoxluğunu. Qrafın sığlıq ədədi 176
Çalışmalar 13 ... 182
14. Qrafların diferensiallanması ... 187
Çalışmalar 14 ... 197
15. Müstəvi (planar) qraflar .. 199
Çalışmalar 15 ... 203
16. Şəbəkədə ekstremal axın məsələləri 206
16.1. Şəbəkə. Şəbəkənin kəsikləri. Şəbəkədə axın ... 206
16.2. Şəbəkədə maksimal axının qurma üçün Ford-Falkerson alqoritmi 213
16.3. Şəbəkədə minimal axının axtarılması 223
Çalışmalar 16 ... 227
Ədəbiyyat ... 234
Giriş

Müasir elmin bir çox sahələrini, elmi-tekniki tərəqqi, ümumiyyətlə, insan əsəliyyətinin və onun tətbiq sahələrinin əsaslı tələbatını diskret riyaziyyatsız təşəvvür etmək mümkün deyildir. Diskret riyaziyyat dedikdə sonlu və ya hesabi sayıda qiymətlər və ya əziziyətlər ala biləcək ixtiyari təbiətdə obyektləri, belə obyektlərin sistemlərini, onların arası müxtəlif mənalarda bəşər düşülen əlaqələri, münasibətləri, informasiyaları və onların ötürülməsi masələlərini, modelləri əyranın riyazi elm bəşər düşəlir. Geniş mənada diskret riyaziyyat bir sıra fundamental və artıq qərarlaşmiş riyazi elmlərin sin-tezini özündə birleşdirən elmdir. Məsələn, belə elmlər – Ədədlər nəzəriyyəsi, Müasir cəbr, Riyazi məntiq, Kombinator analiz, Qraflar nəzəriyyəsi, Kodlaşdırma nəzəriyyəsi, Tam ədədlə proqramlaşdırma və s.-dir.

Qraflar nəzəriyyəsi diskret riyaziyyatın əsas böləmlərindən biri olmaqla, o həm də bir çox elmlərin sədə dilidir. O riyazi aparat, vasiə olmaqla bir çox elm sahələrində geniş tətbiq olunur. Məsələn, müasir texnikiyanın bir çox sahələri ilə bağlı texnoloji mikrosxemlərin qurulmasında, mürəkkəb sistemlərin əsəliyyətlərinin təhlilində, dəmir yolları şəbəkəsinin, telefon və ya kom-püter şəbəkələrinin, iri rəqasiyya sistemlərinin, iqtişadi şəbəkələrin və s. optimal (ən əlverişli) qurulması məsələlərinin həllində qraflar nəzəriyyəsinin üsullarından geniş istifadə olunur. Ona görə də qraflar nəzəriyyəsinin tədris olunması vacib və zəruridir.

Dərs vəsaitində bakalavr pilləsində təhsil alan

Dərs vəsaiti 16 mövzudan və mövzulara dair 16 çalışmadan (hər çalışmada orta hesabla 20-ya yaxın məsələ – misallar verilir) ibarətdir.
1. Qraf. Qrafın bir sırə ilkin anlayışları

Tutaq ki, ixtiyari təbiətli \(x_i \) obyektlərinin \(X = \{x_1, x_2, \ldots, x_n\} \) çoxluğunu verilmişdir və \(x_i \) obyektləri arasında müəyyən əlaqələr (müناسibətlər) mövcuddur. Belə əlaqələr (müناسibətlər) \((x_i, x_j) \) – cütlərə kimi işarə edək. Bu o deməkdəki, əslində biz X çoxluğunun özü-özünü dekart hasilini təyin etmiş oluruz, yəni \(X \times X = X^2 \) çoxluğuna və ya onun müəyyən altçoxluğuna baxırıq. Məsələn, \(X = \{x_1, x_2, x_3\} \) olarsa, onda

\[
X^2 = X \times X = \{(x_1, x_1), (x_1, x_2), (x_1, x_3), (x_2, x_1), (x_2, x_2), (x_2, x_3), (x_3, x_1), (x_3, x_2), (x_3, x_3)\}
\]

olar.

Tutaq ki, \(X = \{x_1, x_2, \ldots, x_n\} \) və \(U \subseteq X \times X = X^2 \). Onda \(G=(X, U) \) cütüne qraf deyilir. Əlbəttə, bu qrafın müəccərəd tərificação. \(X \) obyektlər çoxluğu qrafın təpələr çoxluğu adlandır, \(x_i \)-lər onun təpələridir, təpələrin bir-biri ilə əlaqə müناسibətlərinini bildirən \(u_{ij} = (x_i, x_j) \) – cütlər qrafın tələril adlandır.

Əgər \(u_{ij} = (x_i, x_j) \) tilində təpələrin hansının əvvəl, hansının isə sonra gələcəsi təyin olunmayıbسا, yeni \((x_i, x_j) = (x_j, x_i) \) şərti ödənilərsə, onda \(G=(X, U) \) qraf istiqamətlanmış qraf adlandır. Əgər \(u_{ij} = (x_i, x_j) \) cütü nizamlanmışsa, yeni \((x_i, x_j) \neq (x_j, x_i) \) şərti ödənilərsə, onda \(G=(X, U) \) qrafı istiqamətlanmış qraf adlandır və təl üzərində istiqamət (ox) işarəsi qoyulur.
Əgər $u_{ii}=(x_i,x_i)$ olarsa, yəni til eyni bir x_i təpəsinin özü ilə əlaqəlidirə, onda belə til x_i təpəsinə ilək adlanır.

Əgər verilən $G=(X,U)$ qrafında $u_{ij}=(x_i,x_j)$ tili varsa, onda deyirlər ki, $u_{ij}=(x_i,x_j)$ tili x_i və x_j təpəsində insidentdir. Eyni bir tilə insident olan təpələrə qonşu təpələr deyilir. Eyni bir təpəyə insident olan tillərə qonşu tillər deyilir.

Məsələn,

![Diagram](image1)

x_1 və x_2 qonşu təpələrdir $(x_1,x_2),(x_1,x_3),(x_2,x_1)və(x_2,x_3)$ qonşu tillərdir

Əgər $G=(X,U)$ qrafında hər hansı x_i və x_j təpələrinə insident olan bir neçə tillər olarsa, onda belə tillər parallel tillər adlanır, qraf isə psevdoqraf adlanır. Psevdoqrafda ilək yoxdursa, onda belə qraf multiqraf adlanır. Məsələn,

![Diagram](image2)

Psevdoqrafdır. Multiqrafdır.
Əgər $G=(X,U)$ qrafında təpələr çoxluğu X-sonludursa, onda G qrafı **sonlu qraf**, əks halda, **qraf sonsuz** adlanır. Gələcəkdə baxacağımız qraflar sonlu qraflardır. X çoxluğunun gücündə G qrafının **tərtibi** deyilir.

$G=(X,U)$ qrafında hər hansı x_i təpəsinə insident olan tillərin sayıına bu təpənin **dərəcəsi** deyilir və $d=\deg(x_i)$ kimi işarə olunur. Əgər G qrafı istiqamətənənmiş qrafdırsa, onun təpələrinin **yarımdərəcəsi** anlayışını vermək lazım gelir, yəni bu təpəyə daxil olan tillərin sayıını $d^-(x_i)$, ondan çıxan tillərin sayını isə $d^+(x_i)$ kimi işarə edək.

$$d(x_1) = 3$$
$$d(x_2) = 2$$
$$d(x_3) = 3$$

$$d^-(x_1) = 1, \quad d^+(x_1) = 2$$
$$d^-(x_2) = 2, \quad d^+(x_2) = 2$$
$$d^-(x_3) = 1, \quad d^+(x_3) = 2$$
$$d^-(x_4) = 2, \quad d^+(x_4) = 0$$

Qeyd. İstiqamətənənmiş qrafda hər hansı x_i təpəsin-də ilgək varsa, onda ilgəyi təşkil edən istiqamətənənmiş til həm daxil olan, həm də x_i-dən çıxan til sayılır.

Əgər verilən qrafda hər hansı bir təpə həc bir til insident deyildirsə, onda belə təpə **təcrid (izole) olunmuş**
təpə adlanır.

Lemma 1.1. (Ə ilə six görüşmə haqqında). İstənilən *istiqamətlənmiş* psevdoqrafda onun təpələrinin dərcəçələri cəmi bu qrafın tilləri sayının iki mislinə bərabərdir, ənən
\[\sum_{x_j \in X} d(x_j) = 2m, \]
burada \(m \) – qrafın tilləri sayıdır.

Qeyd. Əgər \(G \) qrafının bütün təpələrinin dərcəçələri eynidirsə, onda belə qraf **bircins** adlanır.

Lemma 1.2. İstənilən *istiqamətlənmiş* psevdoqrafda onun təpələrinin yarımçəçəçələri cəmi bu qrafın tilləri sayına bərabərdir, ənəni
\[\sum_{x_i \in X} d^-(x_i) = \sum_{x_i \in X} d^+(x_i) = m, \]
burada \(m \) – qrafın tilləri sayıdır.

Əgər \(G \) qrafında hər hansı \(x_i \) təpəsinə yalnız bir til insidentdirlər, onda bu təpə və bu til **asilmiş** adlanır.

Tərif 1.1. Əgər \(G = (X, U) \) qrafında paralel tillər və təpələrdə ilək yoxdursa, onda \(G \) qrafı **sadə qraf** adlanır. Sadə \(G \) qrafında onun ixtiyari iki təpəsi qonşudursa, yeni bütün təpələr cut-cut qonşudurlarsa, onda \(G \) qrafı **tam qraf** adlanır. Məsələn,
qrafıları tam qrafılar dır.
İstiqamətənlənnməmiş və n təpəsi olan G tam qrafını
Kₙ kimi işarə edirlər. Belə bir təklif doğrudur.

Lemma 1.3. Kₙ tam qrafında tillərin sayı m üçün

\[C_n^2 = \frac{n(n-1)}{2} = m \]

doğrudur.

Tərəf 1.2. Əgər G=(X,U) qrafı tam qraf deyilsə,
onda onu tam qrafdək tamamlayan \(\overline{G} = (X,U_1) \) qrafına
G qrafının **tamamlayıcısı** deyilir.
Məsələn,

\[
\begin{align*}
\{x_1, x_2, x_3, x_4\} & \qquad \text{Natamam } G \text{ qrafı} \\
\{x_1, x_2, x_3, x_4\} & \cup \{x_1, x_3\} \qquad \text{=} \\
\{x_1, x_2, x_3, x_4\} & \text{Tamamlayıcısı } \overline{G} \text{ qrafı} \\
\{x_1, x_2, x_3, x_4\} & \text{=} \\
\{x_1, x_2, x_3, x_4\} & \text{Tam qraf}
\end{align*}
\]

Tərif 1.3. Əgər $G=(X,U)$ qrafında $U=\emptyset$, yəni G qrafı yalnız izole edilmiş təpələrdən ibarətdir və onda bu qraf G_0 kimi işarə olunur və **stif qraf** adlanır.

İkipaylı qraf. Tutaq ki, $G=(X,U)$ istiqamətli-ən-məmis qrafında təpələrin X çoxluğu eyni X_1 və X_2 altçoxluqlarına ayırılır ki, U tillar çoxluğunun hər bir tilinin ucları məxtəlif X_1 və X_2 altçoxluqlarına daxil olsun. Onda belə $G=(X,U)$ qrafı **ikipaylı (iki hissəli) qraf** adlanır və $|X_1|=p$ və $|X_2|=q$ olduğda ikiçə qraf $K_{p,q}$ kimi işarə olunur.

Məsələn,

$$K_{1,4}$$

$X_1=\{x_1\}, \quad p=1$

$X_2=\{x_2,x_3,x_4,x_5\}, \quad q=4$

ikipaylı qraflardır.

1.1. Qrafin verilməsi üsulları

Qrafı bir neçə üsulla vermək olar. Bu üsullardan əsas olan bir neçə üsulu verək:

1. $G=(X,U)$, burada X qrafın təpələr çoxluğu-dur, U- isə onun tillər çoxluğu-dur. Hər iki çoxluq
konkret olaraq verilirə, G qrafi verilmiş sayılır.

2. **Qrafın həndəsi verilməsi və realizasi.** Əgər $G=(X,U)$ qrafi verilirə, onda müstəvidə (və ya fəzada) onun təpələrini nöqtələr kimi qeyd edirik və tillər çoxluğunun (x_i,x_j) cütlərini ixtiyari həndəsi formaya malik kəsilməz ayrılər kimi x_i ilə x_j təpələri arasında istiqamətli və ya istiqamətsiz (verilən şərtə görə) çəkərik. Nəticədə müəyyən həndəsi konfigurasiya kimi G qrafının həndəsi təsviri alınır.

Misal 1.1. $G=(X,U)$, burada $X=\{x_1,x_2,x_3,x_4\}$, $U=\{(x_1,x_1),(x_1,x_3),(x_2,x_1),(x_3,x_3)\}$ istiqamətlənmiş qrafı verilir. Onun həndəsi təsviri aşağıdakı kimi olacaq.

![Diagram](image)

x_4 - təpəsi izole edilmiş təpədir.

3. **Qrafın matris vasitəsilə verilməsi.** $G=(X,U)$ qrafını onun: a) təpələrinin qoşuluq matrisi, b) təpələrin tillərə insidentlik matrisi, c) çıx matrisi və s. vasitəsilə vermək olar.

a) Təpələrin qoşuluq matrisi. Tutaq ki, $G=(X,U)$ qrafında $|X|=n$, $|U|=m$-dir. Sətir və sütunların adları G qrafının x_i təpələri olan kvadrat A matrisi götürək və onun a_{ij} - elementlərini belə təyin edək:

$$a_{ij} = \begin{cases} 1, & \text{əgər } (x_i,x_j) \in U, \\ 0, & \text{əgər } (x_i,x_j) \not\in U. \end{cases}$$
Aydındır ki, əgər G qrafi istiqamətlənməmiş qraf-dırsa, onda $a_{ij} = (x_i, x_j) = (x_j, x_i)$ olar.

Qeyd. Əgər $G=(X, U)$ – psevdoqrafdırsa, x_i ilə x_j tərəvəzin birleşdirən (əlaqələndirən) (x_i, x_j) tillərinin sayı k_{ij}-yi əcərabərdirənə, onda

$$a_{ij} = \begin{cases}
 k_{ij}, & \text{əgər } (x_i, x_j) \in U \\
 0, & \text{əgər } (x_i, x_j) \notin U
\end{cases}$$

olar.

Misal 1.2. $G=(X, U)$, $X = \{x_1, x_2, x_3, x_4\}$ və $U = \{(x_1, x_2), (x_2, x_2), (x_1, x_3), (x_2, x_4), (x_3, x_4)\}$ qrafının qonşuluq matrisini yazəq:

$$Istiqamətlənməmiş qrafın təpələrinin qonşuluq matrisi simmetrik matrisdir.

b) təpələrin tillərə insidentlik matrisi. Tutaq ki, $G=(X, U)$ qrafında $|X| = n$, $|U| = m$. Sətlərinin adları x_i təpələri, sütunlarının adları $(x_i, x_j) = u_{ij}$ tilləri olan $n \times m$-ölçülü düzbucaqlı matrisi qrafın $təpələrlə tillərin insidentlik matrisi$ adlanır onun r_{ij} elementlərə belə təyin olunur:
1) Əgər G istiqamətlənmiş qrafıdırsa, onda

$$
\begin{align*}
 r_{ij} &= \begin{cases}
 1, & \text{əgər } u_{ij} \text{ tili } x_i \text{ təpəsindən çıxırsə,} \\
 -1, & \text{əgər } u_{ij} \text{ tili } x_i \text{ təpəsində daxil olursa,} \\
 0, & \text{əgər } u_{ij} \text{ tili } x_i \text{ təpəsində insident deyilsə.}
 \end{cases}
\end{align*}
$$

2) Əgər G istiqamətlənmiş qrafıdırsa, onda

$$
\begin{align*}
 r_{ij} &= \begin{cases}
 1, & \text{əgər } u_{ij} \text{ tili } x_i \text{ təpəsində insidentdirəsə,} \\
 0, & \text{əgər } u_{ij} \text{ tili } x_i \text{ təpəsində insident deyilsə.}
 \end{cases}
\end{align*}
$$

Misal 1.3.

![Diagram](image)

<table>
<thead>
<tr>
<th></th>
<th>u_1</th>
<th>u_2</th>
<th>u_3</th>
<th>u_4</th>
<th>u_5</th>
<th>u_6</th>
<th>u_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>x_2</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Burada $r_{11} = 0$, ona görə ki, u_1 tili x_1-ə həm daxil olur, həm də ondan çıxır, deməli, $r_{11} = -1 + 1 = 0$ alınır.

Grafin təpələrinin qonşuluq və təpələrin tilləri insidentlik matrislərinin bir sıra xassələrini verən olar.

Xəsə 1. Multiqrafda qonşuluq matrisinin i-ci sət-rində duran elementlərin cəmi (i-ci sütununda duran elementlərin cəmi) x_i təpəsinin dərəcəsinə bərabərdir:

$$
\sum_{i=1}^{n} a_{ij} = \sum_{j=1}^{n} a_{ij} = d(x_i).
$$

Xəsə 2. Əgər $G = (X,U)$ qrafı isiqamətlənmiş psevdoqrafıdırsa, onda qonşuluq matrisinin i-ci sətir
elementlərinin cəmi
\[\sum_{i=1}^{n} a_{ij} = d^+(x_i), \]
i -ci sütun elementlərinin cəmi
\[\sum_{j=1}^{n} a_{ij} = d^-(x_i). \]

Xəsə 3. Əgər \(G = (X, U) \) qrafı isiqamətlənmiş multiqrafdirsə, onda insidentlik matrisinin sətirlərinin elementləri cəmi sıfırdır və bu matrisin istənilən sətiri yerə qalan sətirlərin xətti kombinasiyasıdır. Əlavə, onun ranqı \(n-1 \) ədədini aşırı, burada \(|X| = n \)-dir.

4. Təpələrin uyğunluğu vasitəsilə qrafın verilməsi. Qeyd edik ki, qrafın tilləri uyğun təpələrin aralarında olan əlaqələrini təsvir edir. Belə əlaqələr birqiymətli olmayan uyğunluq (funksiya, inikas) \(F \) və ya onun tərsi olan \(F^{-1} \) kimi də verilə bilər.

Misal 1.4.
Qeyd. Əgər $G=(X,U)$ qrafı istiqamətlənməmiş qrafırsa, onda $F = F^{-1}$, təpələrin qonşuluq matrisi A üçün $A = A^T$ olur (burada A^T – A-nin transponirə olunmuş matrisidir). Müəyyən çoxluğu F və ya F^{-1} inikası onun elementlərinin inikasının birləşməsidir:

$$F \{x_1, x_2, \ldots, x_k\} = \bigcup_{j=1}^{k} Fx_{ij} \quad \text{və} \quad F^{-1} \{x_1, x_2, \ldots, x_k\} = \bigcup_{j=1}^{k} F^{-1}x_{ij}.$$

Çalışmalar 1

1.1. $G=(X,U)$ qrafını həndəsi, təpələrin qonşuluq matrisi, təpələrin tillərə insidentlik matrisi və təpələrin bir-birinə F inikası üsulları ilə verin.

1) $X = \{x_1, x_2, x_3, x_4\}$,

 $U = \{(x_1, x_2), (x_1, x_3), (x_2, x_2), (x_2, x_4), (x_3, x_4)\}$,

 $G = (X, U)$ – istiqamətlənməmiş qrafıdır.

2) $X = \{x_1, x_2, x_3\}$,

 $U = \{(x_1, x_2), (x_2, x_1), (x_1, x_1), (x_3, x_2), (x_3, x_3), (x_2, x_3)\}$,

 $G = (X, U)$ – istiqamətlənməmiş qrafıdır.

3) $X = \{x_1, x_2, x_3\}$, $U = \{(x_1, x_2), (x_1, x_3), (x_2, x_3), (x_3, x_3)\}$,

 $G = (X, U)$ – istiqamətlənməmiş qrafıdır.

4) $X = \{x_1, x_2, x_3, x_4, x_5\}$,

 $U = \{(x_1, x_2), (x_2, x_3), (x_3, x_4), (x_4, x_5), (x_2, x_4), (x_3, x_5)\}$,

 $G = (X, U)$ – istiqamətlənməmiş qrafıdır.

5) $X = \{x_1, x_2, x_3\}$,

 $U = \{(x_1, x_2), (x_2, x_2), (x_2, x_3), (x_3, x_2), (x_3, x_1)\}$,

 $G = (X, U)$ – istiqamətlənməmiş qrafıdır.
6) \(X = \{x_1, x_2, x_3, x_4\}\),
\[
U = \{(x_1, x_2), (x_1, x_3), (x_2, x_3), (x_2, x_4), (x_3, x_4),
\quad (x_3, x_2), (x_4, x_3), (x_4, x_4)\},
\]
\(G = (X, U)\) – istiqamətlənmiş qrafıdır.

7) \(X = \{x_1, x_2, x_3, x_4\}\),
\[
U = \{(x_1, x_3), (x_1, x_4), (x_2, x_3), (x_2, x_4)\},
\]
\(G = (X, U)\) – istiqamətlənmiş qrafıdır.

8) \(X = \{x_1, x_2, x_3\}\),
\[
U = \{(x_1, x_2), (x_2, x_1), (x_2, x_3), (x_3, x_2), (x_1, x_3), (x_3, x_1)\},
\]
\(G = (X, U)\) – istiqamətlənmiş qrafıdır.

9) \(X = \{x_1, x_2, x_3, x_4\}\),
\[
U = \{(x_1, x_4), (x_2, x_4), (x_3, x_4)\},
\]
\(G = (X, U)\) – istiqamətlənmiş qrafıdır.

10) \(X = \{x_1, x_2, x_3, x_4, x_5\}\),
\[
U = \{(x_1, x_1), (x_1, x_2), (x_1, x_3), (x_2, x_5),
\quad (x_5, x_2), (x_4, x_5), (x_5, x_5)\},
\]
\(G = (X, U)\) – istiqamətlənmiş qrafıdır.

1.2. Verilən qrafçalarda təpələrin dərəcələrinini tapın və onlar üçün Lemma 1.1 və Lemma 1.2 şərtlərini yoxlayın.

1) ![Diagram 1]

2) ![Diagram 2]
2. Qrafların izomorfluğu. Homeomorf qraflar

Hansı qraflar bir-birindən fərqlı sayila bilər? Bu sualın cavabını qrafların izomorfluğunu anlayışı ilə vermək olar. Əsəndə izomorf qraflar təpələrinin işarə olunan simvolları ilə fərqlənir, yəni onlar eyni qraflardır, izomorfizmin daha dəqiq tərəfini verək.

Tərəf 2.1. Əgər G_1 və G_2 qraflarının X_1, X_2 - təpələr çoxluqlarının arasında uyğun qonşuluq münasibətlərini saxlayan biyektiv (qarşılıqlı bəriqiyətli)

$$X_1 \xrightarrow{\phi} X_2$$

ininəsə vərsə (qarşılıqlı bəriqiyətli uyğunluq varsa, yəni $(x_{i}, x_{j}) \in U_1 \iff (\phi(x_{i}), \phi(x_{j})) \in U_2$ olarsa, onda G_1 və G_2 qrafları izomorf qraflar adlanır.

Bu tərəf istiqamətlənmiş qraflar üçün də doğrudur, yəni

$$X_1 \xrightarrow{\phi} X_2 \iff (x_{i}, x_{j}) \in U_1 \iff (\phi(x_{i}), \phi(x_{j})) \in U_2$$

olmalıdır.

Verilən G_1 və G_2 qraflarının izomorf olub-olmadiqlarını bir neçə üsulla müəyyən etmək olar. Onlardan bəzi dərəcələrini verək.

1) Qrafların təpələrinin dərəcələrinə görə onların izomorf olub-olmadiğını müəyyən etmək olar. Bunu əyəni bir misalda göstərək (şəkil 2.1).

G_1 və G_2 qraflarının təpələrinin dərəcələrinini hesablayaq.
\[d(x_1) = 3, \quad d(y_1) = 3, \]
\[d(x_2) = 3, \quad d(y_2) = 3, \]
\[d(x_3) = 3, \quad d(y_3) = 2, \]
\[d(x_4) = 3, \quad d(y_4) = 3, \]
\[d(x_5) = 3, \quad d(y_5) = 3, \]
\[d(x_6) = 3, \quad d(y_6) = 2. \]

Şəkil 2.1. Qrafların təpələrinin dərəcələrinə görə onların izomorfluğunun yoxlanılması

Deməli, \(G_1 \) qrafında dərəcələri 3 olan \(x_3 \) və \(x_2 \) – iki təpə olduğu halda \(G_2 \) qrafında dərəcələri 2 olan \(y_3 \) və \(y_6 \) təpələri var, yəni onlar fəqlidir. Bu ise o demək-dir ki, qraflar izomorf deyildir, çünki izomorfluq şərti pozulur.

Beləliklə, belə bir izomorfluq qaydasını vermək olar.

Qayda. Əgər \(G_1 \) qrafında təpələrinin dərəcəsi 1 olan \(a_1 \) sayıda təpə, təpələrinin dərəcəsi 2 olan \(a_2 \) sayıda təpə, \ldots, təpələrinin dərəcəsi k olan \(a_k \) sayıda təpə və s.
varsə, G_2 qrafında uyğun olaraq dərcədər 1,2,\ldots,k,\ldots olan $b_1,b_2,\ldots,b_k,\ldots$ sayda təpələr varsa və heç olmazsa $a_i=b_i$ ($i=1,2,\ldots$) bərabərliklərindən birisi pozularsa, onda G_1 və G_2 qrafları izomorf deyildir.

2) Qraflarin izomorfluğunu onların təpələrinin uyğun qonşuluq matrisi və tillərlə insidentlik matrisləri ilə vermək olar. Başqa sözlə, aşağıdakı təkliflər doğru-dur:

Teorem 2.1. İkə G_1 və G_2 qraflarının izomorf olması üçün zəruri və kafi şərt onların təpələrinin qonşuluq matrislərində sətir və sütunların yerini eyni zamanda dəyişdikdə birinin matrisindən digərinin matrisinin alınmasıdır.

Teorem 2.2. Əgər G_1 və G_2 istiqamətənmiş qraflarların insidentlik B_1 və B_2 matrisləridə sətir və sütunların ixtiyari yerdəyisməsində biri digərindən alınırsa, onda bu qraflar izomorf durlar.

Bu təkliflərdən də alınır ki, əgər G_1 və G_2 qrafları izomorf dursa, onda onların təpələr çoxluğ X_1,X_2 və tillər çoxluğu U_1,U_2 üçün

$$X_1 \xrightarrow{\varphi} X_2 \iff (x_{i,i},x_{i,j}) \in U_1 \iff (\varphi(x_{i,i}),\varphi(x_{i,j})) \in U_2$$

şərti ödənilirsə, onda onların izomorfluğundan alınır ki,

a) $\forall x_{i,i} \in X_1$ üçün $d(x_{i,i}) = d(\varphi(x_{i,i}))$,

b) $|U_1| = |U_2|, |X_1| = |X_2|$ olmalıdır,

istiqamətənmiş qraflar üçün a) bəndini belə vermək olar:
\[d^+(x_{i_1}) = d^+(\varphi(x_{i_1})), \]
\[d^-(x_{i_1}) = d^-(\varphi(x_{i_1})). \]

Qeyd. Psevdoqrafların izomorfluq şərti sədə qrafların izomorfluq şərtindən fərqlənir, psevdoqraf \(G_1 = (X_1, U_1) \) və \(G_2 = (X_2, U_2) \) izomorf olmasi üçün elə biyektiv \(\varphi \) və \(\psi \) inikasları olmalıdır ki,

\[X_1 \xrightarrow{\varphi} X_2, \quad U_1 \xrightarrow{\psi} U_2 \Rightarrow \forall x_{ij} = (x_{i_1}, x_{j_1}) \]

olduqda

\[\psi(x_{ij}) = (\psi(x_{i_1}), \psi(x_{j_1})) \]

olsun. Bu o deməkdər ki, belə \(\psi \) inikasi tillərin misliliyini saxlayır.

Əlavə qeyd edək ki, qrafların izomorfluq münəsibəti ekvivalentlik münəsibətidir, yəni refleksiv \((G_1 \sim G_2) \), simmetrik \((G_1 \sim G_2 \iff G_2 \sim G_1) \) və tranzitivdir, yəni \(G_1 \sim G_2, \ G_2 \sim G_3 \Rightarrow G_1 \sim G_3. \)

Homeomorf qraflar. Tutaq ki, \(G = (X, U) \) istiqamətlənmiş qrafdır və bu qrafın hər hansı \((x_i, x_j) \in U \) tərəfində yeni tərələr qeyd etdikdə alınan \(G_1 = (X_1, U_1) \) qrafıdır. \(G_1 \) qrafı \(G \ qrafının bölgüsü \) adlanır.

Tərif 2.2. \(G_1 \) və \(G_2 \) qraflarının bölgülərindən alınan \(G'_1 \) və \(G'_2 \) qrafları izomorfdurlarsa, onda \(G_1 \) və \(G_2 \) qrafları **homeomorf qraflar** adlanır.
Çalışmalar 2

Aşağıdakı qraflardan bir-biri ilə izomorf olan qrafları təyin edin.

1)

2)

3)

4)

3.1. Altqraflar. Qismən qraflar (suqraflar)

Tutaq ki, \(G_1 = (X_1, U_1) \) və \(G_2 = (X_2, U_2) \) qrafları verilir.

Tərif 3.1. Əgər 1) \(X_2 \subseteq X_1 \) və 2) \(U_2 \subseteq U_1 \) olarsa, onda \(G_2 \) qrafı \(G_1 \) qrafının altqrafı (hissəsi) adlanır. Aydındır ki, hər bir qraf özünün altqrafıdır.

Tərif 3.2. Əgər \(G = (X, U) \) və \(G_1 = (X_1, U_1) \) qraf-ları üçün 1) \(X_1 = X \) və 2) \(U_1 \subseteq U \) şərtləri ödənilərsə, onda \(G_1 = (X_1, U_1) \) qrafı \(G \) qrafının qismən qrafı və ya suqrafı adlanır.

Misal 3.1.

\[
\begin{array}{ccc}
\text{G} & \text{G}_1 & \text{G}_2 \\
\text{- verilən qraf} & \text{- altqraf} & \text{- qismən qraf}
\end{array}
\]

Aydındır ki, hər bir qismən qraf (suqraf) eyni zamanda altqrafdır, çünki qismən qraflar müəyyən tilləri atmaqla verilən qrafdan alınır, altqraflar isə verilən qrafdan müəyyən əpəxər və bu əpəxərə insident olan tilləri atmaqla alınır.

Teorem 3.1. \(G = (X, U) \) qrafı \(n \)-tərtiblidirə, yəni \(|X| = n \)-dirə, onda bu qrafdan mümkin olan qismən qrafların sayı, yəni \(G \) qrafından alınan qismən qraflar
çoxluğu $B_1\{G\}$ olarsa, onda bu çoxluğun gücü
\[|B_1\{G\}| = 2^{n^2} \]
qədərdir.

Teorem 3.2. $G = (X,U)$ qrafında $|X| = n$-dirə və bu qrafda mümkin olan altqrafalar çoxluğu $B_2\{G\}$ olarsa, onda bu çoxluğun gücü
\[|B_2\{G\}| = \sum_{k=0}^{n} C_n^k \cdot 2^{k^2} \]
qədərdir.

Qeyd. Teorem 3.2 o deməkdəki, n-elementli X tərələp çoxlüğunda altqrafların sayı X çoxlüğunda təyin olunan qismən qrafların cəmə və s. ilə təyin olunur, nəhayət boş qraf alınır. Ona gömə də alınır ki,
\[
\frac{2^{n^2}}{C_n^{n-dafə}} + \frac{2^{(n-1)^2}}{C_n^{n-1-dafə}} + \ldots + \frac{2^{(n-1)^2}}{C_n^{n-1-dafə}} + \ldots + \frac{2^{(n-(n-1))^2}}{C_n^{n-1-dafə}} + \ldots + \frac{2^{n^2}}{C_n^{n-dafə}}.
\]

3.2. Qraflar üzərində əməllər

Qraflar üzərində əməllər avtomatlar nəzəriyyəsində geniş tətbiq olunur. Ona gömə də bu əməllərin bir neçəsini verək.

1. Qrafların birleşməsi əməli. Tutaq ki, $G_1 = (X_1,U_1)$ və $G_2 = (X_2,U_2)$ qraflar verilir. Bu qrafların birleşməsi
\[
G = G_1 \cup G_2 = (X_1 \cup X_2, U_1 \cup U_2)
\]
Misal 3.2.

\[
\begin{align*}
G_1 & = \left\{ x_1, x_2, x_3, x_4 \right\} \\
G_2 & = \left\{ x_1, x_3, x_4 \right\}
\end{align*}
\]

\[G = G_1 \cup G_2\]

2. Qrafların kəsişməsi əməli. Tutaq ki,
\[G_1 = (X_1, U_1) \text{ və } G_2 = (X_2, U_2)\] qrafı verilir və \[X_1 \cap X_2 \neq \emptyset\]. Bu qrafların kəsişməsi
\[G = G_1 \cap G_2 = (X_1 \cap X_2, U_1 \cap U_2)\] qrafına deyilir.

Misal 3.3.
3. Qrafların hasili əməli. Tutaq ki, $G_1 = (X, F) \text{ və } G_2 = (Y, P)$ qrafları analitik üsulla verilir, burada F, P–uyğun qrafların təpələrinin inikəsi olunur və belə təyin edilir:

$$G = G_1 \times G_2 = (Z, R),$$

burada $Z = X \times Y \text{ və } \forall x \in X, \forall y \in Y$ üçün

$$R(x, y) = Fx \times Py.$$

Misal 3.4.

\begin{center}
\begin{tikzpicture}
 \node[vertex] (v1) at (0,0) {x_1};
 \node[vertex] (v2) at (1,0) {x_2};
 \node[vertex] (v3) at (0,-1) {x_3};
 \node[vertex] (v4) at (1,-1) {x_4};

 \draw (v1) -- (v2);
 \draw (v1) -- (v3);
 \draw (v1) -- (v4);
 \draw (v2) -- (v3);
 \draw (v2) -- (v4);

 \node[vertex] (v5) at (2,0) {y_1};
 \node[vertex] (v6) at (3,0) {y_2};
 \node[vertex] (v7) at (2,-1) {y_3};
 \node[vertex] (v8) at (3,-1) {y_4};

 \draw (v5) -- (v6);
 \draw (v5) -- (v7);
 \draw (v5) -- (v8);
 \draw (v6) -- (v7);
 \draw (v6) -- (v8);

 \node[vertex] (v9) at (1,1) {x_5};
 \node[vertex] (v10) at (1,-2) {y_5};

 \draw (v9) -- (v10);

\end{tikzpicture}
\end{center}

$G_1 : X = \{x_1, x_2, x_3, x_4\}$

$Fx_1 = \{x_1, x_2\}$,

$Fx_2 = \{x_1, x_3\}$,

$Fx_3 = \{x_2, x_4\}$,

$Fx_4 = \{x_3\}$.

$G_2 : Y = \{y_1, y_2, y_3\}$

$Py_1 = \{y_2\}$,

$Py_2 = \{y_1, y_3\}$,

$Py_3 = \{y_2\}$.

$Z = X \times Y = \{(x_1, y_1), (x_1, y_2), (x_1, y_3), (x_2, y_1), (x_2, y_2), (x_2, y_3), (x_3, y_1), (x_3, y_2), (x_3, y_3), (x_4, y_1), (x_4, y_2), (x_4, y_3)\}.$

$Rz_1 = R(x_1, y_1) = Fx_1 \times Py_1 = \{x_1, x_2\} \times \{y_2\} = \{(x_1, y_2), (x_2, y_2)\} = \{z_2, z_5\},$
\[Rz_2 = R(x_1, y_2) = Fx_1 \times Py_2 = \{x_1, x_2\} \times \{y_1, y_3\} = \{(x_1, y_1), (x_1, y_3), (x_2, y_1), (x_2, y_3)\} = \{z_1, z_3, z_4, z_6\}, \]
\[Rz_3 = R(x_1, y_3) = Fx_1 \times Py_3 = \{x_1, x_2\} \times \{y_2\} = \{(x_1, y_2), (x_2, y_2)\} = \{z_2, z_5\}, \]
\[Rz_4 = R(x_2, y_1) = Fx_2 \times Py_1 = \{x_1, x_3\} \times \{y_2\} = \{(x_1, y_2), (x_3, y_2)\} = \{z_2, z_8\}, \]
\[Rz_5 = R(x_2, y_2) = Fx_2 \times Py_2 = \{x_1, x_3\} \times \{y_1, y_3\} = \{(x_1, y_1), (x_1, y_3), (x_3, y_1), (x_3, y_3)\} = \{z_1, z_3, z_7, z_9\}, \]
\[Rz_6 = R(x_2, y_3) = Fx_2 \times Py_3 = \{x_1, x_3\} \times \{y_2\} = \{(x_1, y_2), (x_3, y_2)\} = \{z_2, z_8\}, \]
\[Rz_7 = R(x_3, y_1) = Fx_3 \times Py_1 = \{x_2, x_4\} \times \{y_2\} = \{(x_2, y_2), (x_4, y_2)\} = \{z_5, z_{11}\}, \]
\[Rz_8 = R(x_3, y_2) = Fx_3 \times Py_2 = \{x_2, x_4\} \times \{y_1, y_3\} = \{(x_2, y_1), (x_2, y_3), (x_4, y_1), (x_4, y_3)\} = \{z_4, z_6, z_{10}, z_{12}\}, \]
\[Rz_9 = R(x_3, y_3) = Fx_3 \times Py_3 = \{x_2, x_4\} \times \{y_2\} = \{(x_2, y_2), (x_4, y_2)\} = \{z_5, z_{11}\}, \]
\[Rz_{10} = R(x_4, y_1) = Fx_4 \times Py_1 = \{x_3\} \times \{y_2\} = \{(x_3, y_2)\} = \{z_8\}, \]
\[Rz_{11} = R(x_4, y_2) = Fx_4 \times Py_2 = \{x_3\} \times \{y_1, y_3\} = \{(x_3, y_1), (x_3, y_3)\} = \{z_7, z_9\}, \]
\[Rz_{12} = R(x_4, y_3) = Fx_4 \times Py_3 = \{x_3\} \times \{y_2\} = \{(x_3, y_2)\} = \{z_8\}. \]
Beləliklə, $G = G_1 \times G_2 = (Z, R)$ qrafını qura bilərik.

4. Qrafların həlqəvi cəm (simmetrik fərqi). $G_1 = (X, U_1)$ və $G_2 = (Y, U_2)$ qraflarının simmetrik fərqi $G = G_1 \oplus G_2$ kimi işarə olunur və belə təyin edilir:

$$G = G_1 \oplus G_2 = (Z, R) = (X \cup Y, U_1 \oplus U_2),$$

burada

$$U_1 \oplus U_2 = (U_1 - U_2) \cup (U_2 - U_1) = (U_1 \cup U_2) - (U_1 \cap U_2).$$

Misal 3.5.

$G_1 \oplus G_2 = G = G_1 \oplus G_2$
5. Qrafların kompozisiyası. İki \(G_1 = (X, F) \) və \(G_2 = (X, P) \) qraflarının kompozisiyası \(G = G_1(G_2) \) və ya \(G = G_2(G_1) \) kimi işarə olunur və elə əlavə qrafına deyirlər ki, \(G = (X, R) \) olduqda hər bir \(x_i \in X \) təpəsinə qonşu olan təpələr çoxluğunu ardıcıl iki tərsi, yəni birinci til \(G_1 \) qrafına və ikinci til isə \(G_2 \) qrafına və, tərsinə, aid olur. Belə inikasi \(R(X) = F(P(X)) \) və ya \(R(X) = P(F(X)) \) kimi işarə etmək olar.

Misal 3.6.

\[
\begin{align*}
\text{qrafların kompozisiyasını tapın.} \\
G_1 = (X, F), \ G_2 = (X, P) \text{ olsun.} \\
G_1 \text{-də:} \\
X = \{x_1, x_2, x_3\}, \ Fx_1 = \{x_2\}, \ Fx_2 = \{x_1\}, \ Fx_3 = \emptyset, \\
G_2 \text{-də:} \\
X = \{x_1, x_2, x_3\}, \ Px_1 = \{x_2, x_3\}, \ Px_2 = \{x_1\}, \ Px_3 = \{x_1\}.
\end{align*}
\]

Tərifə görə, məsələn, \(G = G_1(G_2) \) olarsa, onda \(G = (X, R) \) olduqda
\[
\begin{align*}
Rx_1 = F(Px_1) = F\{x_2, x_3\} = Fx_2 \cup Fx_3 = \{x_1\} \cup \emptyset = \{x_1\}, \\
Rx_2 = F(Px_2) = F\{x_1\} = \{x_2\}, \\
Rx_3 = F(Px_3) = F\{x_1\} = \{x_2\}.
\end{align*}
\]
Deməli, G_1 və G_2 qraflarının kompozisiyası belə bir qrafdır:

\[
\begin{align*}
\text{Çalısmalar 3} \\
\text{Aşağıda } G_1 \text{ və } G_2 \text{ qrafları verilir. } G_1 \cup G_2, G_1 \cap G_2, G_1 \times G_2, G_1 \oplus G_2 \text{ və } G_1(G_2), G_2(G_1) \text{ qraflarını qurun.}
\end{align*}
\]
Yollar. Konturlar

Tutaq ki, $G = (X,U)$ qrafı verilir, burada $X = \{x_1,x_2,\ldots,x_n\}$, $U = \{u_1,u_2,\ldots,u_m\}$, $u_i = (x_{i_1}, x_{i_2})$, $i = 1,2,\ldots,n$.

Verilən qrafda x_i təpələrinin və u_i tillərinin müəyyən olunmuşdur

$$x_1, u_1, x_2, u_2, \ldots, x_{n-k}, u_{n-k}, x_{n-(k+1)}$$

ardıcılığına marşrut deyilir, burada x_1 təpəsi marşrutun başlangıcı, $x_{n-(k+1)}$ təpəsi marşrutun sonu adlanır.

Hər hansı marşrutu təpələrin x_1,x_2,\ldots,x_k və ya tillərin u_1,u_2,\ldots,u_k ardıcılığı kimi də vermek olar. Əgər qraf istiqamətənəməmişdirə, onda təpələrin belə ardıcılığı zəncir adlanır. Zəncirin təşkil edən təpələr arasında təkrar olan yoxdursa, onda belə zəncir sədə, əks halda mürəkkəb (sədə olməyən) adlanır. Zəncirin başlangıc və son təpələri üst-üstə düşərsə, onda belə zəncir tsikl adlanır.

Verilən qrafın bütün təpələrinən yalnız bir dəfə keçən tsiklə Hamilton tsikli deyilir. Qrafın hər bir tərəfdən yalnız bir dəfə keçən tsiklə Eyler tsikli deyilir.

Əgər verilən qraf istiqamətənəməmiş qrafdırırsa, onda tillərin müəyyən ardıcılığına yol deyilir. Əgər yolu təşkil edən tillər arasında təkrarlanan tillə yoxdursa, onda belə yol sədə yol adlanır. Başlangıc və son təpələri üst-üstə düşən yola qapalı yol və ya kontur deyilir.

Tsikli olmayan istiqamətənəməmiş qraf atsiklik
qraf adlanır.
Marşrutu (zənciri, yolu) təskil edən tillərin sayına bu marşrutun uzunluğu deyilir.
İstiqamətələnməmiş qrafda ən kiçik tsiklin uzunluğuna bu qrafın çevrəsi ("qucaq dolağı") deyilir.
Misal 4.1.

\[
S_1 = (x_1, x_2), \quad S_2 = (x_1, x_2, x_4, x_7) - \text{sadə zəncirlərdir;}
\]
\[
S_3 = (x_1, x_2, x_4, x_7, x_8, x_4) - \text{sadə zəncir deyildir;}
\]
\[
\mu_1 = (x_1, x_2, x_4, x_7, x_8, x_4, x_2) - \text{zəncir olmayan marşrutdur;}
\]
\[
t_1 = (x_1, x_2, x_4, x_7, x_8, x_4, x_1) - \text{sadə olmayan tsikldir;}
\]
\[
t_2 = (x_1, x_2, x_4, x_1) - \text{sadə tsikldir.}
\]
Bu qrafın çevrəsi ("qucaq dolağı") 3-ə bərabərdir, yəni \(S = (x_1, x_2, x_4, x_1) \) və ya \(S = (x_4, x_8, x_7, x_4) \) uzunluğu ən kiçik olan tsikllərdir.

Teorem 4.1. Psevdoqrafda (istiqamətələnməmiş psevdoqrafda) hər bir tsikldən (qapalı yoldan-konturdan) sadə tsikl (sadə kontur) ayırmaq olar.

Qeyd 1. Sadə tsiklin uzunluğu an azı 3-dür (psevdoqrafda, multiqrafda və qrafəlarda) uyğun olaraq, 1 (ilgək), 2 (paralel, bir-birinə qərəz yönələn) uzunluqlu tsikl ola bilər.
Teorem 4.2. Qapalı olmayan hər bir marsrutdan (yoldan) eyni başlangıç və son təpələri olan zəncir ayırmaq olar.

Qeyd 2. İki \(\mu_1 = x_i, u_i, x_i, u_i, ..., x_i, u_i, x_i \) və \(\mu_2 = x_{i+1}, u_{i+1}, ..., x_{i+m} \) marşrutlarının (yolların) hasilı (kompozisisiyasi) \(\mu_3 = \mu_1 \cdot \mu_2 \), yəni \(\mu_2 \)-nin \(\mu_1 \)-in davamı kimi gətirilməsinə deyilir. Məsələn,

\[
\mu_1 = x_1, u_1, x_2, u_2, x_3
\]

və

\[
\mu_2 = x_3, u_4, x_5, u_6, x_7
\]

olarsa, onda

\[
\mu_3 = \mu_1 \cdot \mu_2 = x_1, u_1, x_2, u_2, x_3, u_4, x_5, u_6, x_7
\]

alinır.

4.1. Qrafıarda müəyyən uzunluqlu marşrutların (yolların) sayının aşkar edilməsi

Tutaq ki, \(G = (X, F) \) qrafı verilir və \(F \) qrafın təpələrinin və ya təpələr çoxluğunun birqiymətli olmayan inikasıdır. Qrafın təpələri arasında müəyyən uzunluqlu marşrutların (yolların) olub-olmamasını aşkar edən üsullardan biri belə bir təklifdən alınır.

Teorem 4.3. \(G \) qrafının təpələrinin \(A \) qonşuluq matrisinin \(A_k = A \cdot A \cdot A \cdots A \) qüvvətlərindən alınan matrisin \((i, j)\)-cu elementi onun \(x_i \)-ci təpəsini \(x_j \)-ci təpəsi ilə birləşdirən \(k \) uzunluqlu marşrutların (yolların) sayıdır.

Nəticə 1. \(G \) qrafının \(n \) tərtibli qonşuluq matrisində \((x_i, x_j)\) – marşrutlarının \((x_i \neq x_j)\) olması üçün zəruri və
kafi şərt

\[B_{n-1} = A + A^2 + \ldots + A^{n-1} \]
matrisinin \((i, j)\)-çu elementinin sıfırdan fərqli olmasıdır.

Nəticə 2. \(n\) tərtibli \(G\) qrafında \(x_i\) tərəqsinin daxil olduğu tsiklin olması üçün zəruri və kafi şərt

\[B_n = A + A^2 + \ldots + A^n \]
qonşuluq matrisinin \((i, j)\)-çu elementinin sıfır olmama-

Teorem 4.3-ü və onun nəticələrini konkret bir misalda göstərək.

![Diagram](image.png)

Təqələrin qonşuluq \(A\) matrisini yazəq:

\[
A = \begin{bmatrix}
B & E & D & C \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
\end{bmatrix}
\]

\[
A^2 = \begin{bmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
\end{bmatrix} \begin{bmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
\end{bmatrix} = \begin{bmatrix}
3 & 2 & 2 & 2 \\
2 & 3 & 2 & 2 \\
2 & 2 & 3 & 2 \\
2 & 2 & 2 & 3 \\
\end{bmatrix},
\]
\[A^3 = \begin{bmatrix}
6 & 7 & 7 & 7 \\
7 & 6 & 7 & 7 \\
7 & 7 & 6 & 7 \\
7 & 7 & 7 & 6 \\
\end{bmatrix} \]

A³ matrisinin, məsələn, (2,3)-cü elementi 7-dir. Bu o deməkdir ki, E təpəsindən D təpəsini uzunluğu 3 olan 7 marşrut var. Onlardan bir neçəsini göstərək:

- \(E, u_1, B, u_2, C, u_6, D; \)
- \(E, u_3, C, u_2, B, u_4, D; \)
- \(E, u_5, D, u_4, B, u_4, D \) və s.

Qeyd. Verilən qrafda müəyyən uzunluqlu marşrutlar bilavasitə almak üçün A qonşuluq matrisində \((i, j)\)-cü element olaraq \((x_i, x_j)\) tilini yazib matrisi lazıım olan qüvvətə yüksəltmək lazımdır.

Məsələn, istiqamətlənmiş G qrafını götürək.

\[
A = \begin{bmatrix}
0 & u_1 & 0 & 0 \\
0 & 0 & 0 & u_3 \\
0 & u_2 & 0 & u_5 \\
u_4 & 0 & 0 & 0 \\
\end{bmatrix}
\]
\[A^2 = A \cdot A = \begin{bmatrix} 0 & u_1 & 0 & 0 \\ 0 & 0 & 0 & u_3 \\ 0 & u_2 & 0 & u_5 \\ u_4 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & u_1 & 0 & 0 \\ 0 & 0 & 0 & u_3 \\ 0 & u_2 & 0 & u_5 \\ u_4 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & u_1 u_3 \\ u_3 u_4 & 0 & 0 & 0 \\ u_5 u_4 & 0 & 0 & 0 \\ 0 & u_4 u_1 & 0 & 0 \end{bmatrix} \]

Deməli, \(x_2 \) təpəsindən \(x_1 \) təpəsinə uzunluğu 2 olan \(u_3, u_4 \) – yol var, \(x_1 \) təpəsindən \(x_4 \) təpəsinə uzunluğu 2 olan \(u_1, u_3 \) – yol var və s.

** Çalışmalar 4 **

Aşağıdakı qrafıldara təpələrin qonşuluq matrisinin köməyi ilə uzunluğu 3 olan marşrutları və \(x_1 \) təpəsindən çıxan və uzunluğu 2 olan bütün marşrutları tapın.

1) \(x_2 \) 2) \(x_2 \)
5. Əlaqəli qraflar. Möhkəm əlaqəli qraflar

Qraflar nəzəriyyəsində əsas anlayışlardan biri də qrafin əlaqəlilik münasibətindir.

Əgər hər hansı \(G \) qrafında ixtiyari iki \(x_i \neq x_j \) təpələrinini birləşdirən ən azı bir marşrut (yol) varsa, onda \(x_i \) və \(x_j \) təpələri əlaqəli təpələr, qraf isə əlaqəli qraf adlanır.

Əgər \(G \) qrafında üst-üstə düşməyən ixtiyari iki \(x_i \) və \(x_j \) təpələrinini birləşdirən \((x_i, x_j)\) – marşrutu (yolu) və \((x_j, x_i)\) – marşrutu (yolu) varsa, onda \(G \) qrafı möhkəm əlaqəli qraf adlanır.

Aydındır ki, əgər \(G \) qrafı istiqamətənəməmiş əlaqəli qrafdirsə, onda həm də möhkəm əlaqəlidir, çünki bu halda \((x_i, x_j)\) – marşrutu \((x_j, x_i)\) – marşrutu ilə üst-üstə düşür.

Misal 5.1.

\[
\begin{array}{c}
\text{Misal } 5.1.
\end{array}
\]
Qraf məhkəm əlaqəlidir, cünki ixtiyari iki \(x_i \) və \(x_j \) təpələrindən birindən digərində aparan yol var.

Teorema 5.1. İstənilən \(G \) qrafında ya qrafın özü, ya da onun tamamlayıcısı əlaqəlidir.

Misal 5.2.

\[G \]

\[\overline{G} \] – tamamlayıcı qraf

Tərəfif 5.1. Hər hansı \(G \) qrafını təşkil edən altqraf-llara onun əlaqəlilik komponentlərini (təşkiledicilər) deyilir.

Ola bilsin ki, qrafın altqraflarını çərəsində məhkəm əlaqəli altqrafları olsun. Qraflar nəzəriyyəsində hər hansı \(G \) qrafını onun məhkəm əlaqəli altqraflarına ayırlışi məşələsi vacib məşələrdən biridir.
5.1. Qrafın maksimal möhkəm əlaqəli altqraflara ayırması

Tərəf 5.2. Əgər G qrafının hər hansı möhkəm əlaqəli G_1 altqrafı bəşqa bir möhkəm əlaqəli G_2 altqrafına tamamilə daxil deyildirsə, onda G_1 altqrafı G-nin maksimal möhkəm əlaqəli altqrafı adlanır.

Hər hansı G qrafını onun maksimal möhkəm əlaqəli altqraflara (əgər belə altqraflar varsa) ayırılmasını bir neçə üsulla vermək olar. Onlardan bir neçəsi ilə tanış olaq.

1. Çatdırma və əksçatdırma matrislər üsulu

Tutaq ki, $G = (X, U)$ qrafı verilir və A matrisi bu qrafın təpələrinin qoşuluq matrisidir. Belə bir B matrisi düzəldək:

$$B = E + A + A^2 + \ldots + A^n,$$

burada E – vahid matrisdir.

B matrisinin köməyilə n-tərtibli C matrisinin c_{ij} elementlərinini belə təyin edək:

$$c_{ij} = \begin{cases}
1, & b_{ij} \neq 0 \text{ olarsa}, \\
0, & b_{ij} = 0 \text{ olarsa}.
\end{cases}$$

Tərəf 5.3. Əgər $G = (X, U)$ qrafı istiqamətlanməmiş qrafdırsa, onda C matrisi əlaqəlik matrisi adlanır. Əgər G qrafı istiqamətlanmış qrafdırsa, onda C matrisi çatdırma matrisi adlanır, yəni onun c_{ij} elementi sıfır deyildirsə, onda bu o deməkdir ki, x_i təpəsindən x_j təpəsinə çatdırən (aparan) marşrut var.

Əksçatdırma L matrisinin ℓ_{ij} elementləri belə təyin olunur:

$$
\ell_{ij} = \begin{cases}
1, & \text{əgər } x_j \text{ təpəsindən } x_i \text{ təpəsinə } \\
0, & \text{əgər } x_j \text{ təpəsindən } x_i \text{ təpəsinə }
\end{cases}

\begin{align*}
&\text{marşrut (yol) varsa,} \\
&\text{marşrut (yol) yoxdursa.}
\end{align*}

Asanlıqla göstərmək olar ki, $L = C^T$-dir.

Tutaq ki, belə bir $S = C^*L$ matrisi düzəldirik, burada * əməli çatdırma C və əksçatdırma L matrislərinin uyğun elementlərinin hasili deməkdir, yəni $s_{ij} = c_{ij} * \ell_{ij}$.

Əgər x_i və x_j təpələri qarşılıqlı çatdırıla bilən təpələrdirsə, onda yalnız $s_{ij} = 1$, əks halda, $s_{ij} = 0$. Bu dediklərimizini konkret bir misalda nümayiş etdirək.

Misal 5.3.

\[G = (X, U), \]

burada $X = \{x_1, x_2, x_3, x_4, x_5\}$,

\[U = \{(x_1, x_2), (x_2, x_4), (x_4, x_5), (x_2, x_3), (x_3, x_1)\} \]

qrafını möhkəm əlaqəli alqraflara ayırır.
A – qonsuluq matrisi belə olacaq:

\[
A = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

A – qonsuluq matrisinin \(A^2, A^3, A^4, A^5\) qüvvətlərini hesablayaq.

\[
A^2 = A \cdot A = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix} \cdot \begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix};
\]

\[
A^3 = A^2 \cdot A = \begin{bmatrix}
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix} \cdot \begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]
\[A^4 = A^3 \cdot A = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \]

\[A^5 = A^4 \cdot A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \]
İndi ise B matrisini təyin edək:

$$B = E + A + A^2 + A^3 + A^4 + A^5 =$$

$$= \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{bmatrix} + \begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} + \begin{bmatrix}
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} + \begin{bmatrix}
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} + \begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} + \begin{bmatrix}
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} =$$

$$= \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}$$
\[
\begin{bmatrix}
2 & 2 & 2 & 2 & 1 \\
2 & 2 & 2 & 2 & 2 \\
2 & 2 & 2 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

Buradan alılıq ki,
\[
C = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

Əksçatdırma matrisi \(L = C^T = \begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1
\end{bmatrix} \) və
\[
S = C^T L = \begin{bmatrix}
[1 1 1 0 0] & 0 & 0 \\
[1 1 1 0 0] & 0 & 0 \\
[1 1 1 1 0] & 0 & 0 \\
[1 1 1 1 1] & 0 & 0
\end{bmatrix}
\]

deməli, üç maksimal məhəllə məşqəli alıqraf vardır:
Beləlikdə, S matrisində baş diagonal üzrə vahidlərdən ibarət kvadrat matrislər (onlar qırıq-qırıq xətlərə göstərilmişdir) alınmış maksimal məhkəm əlaqəli alt-qrafların uyğun matrisləridir.

Misal 5.3-də verilmiş qrafə uyğun çatdıurma və əksçətən qrafənən matrislərinin, məhkəm əlaqəlilik komponentləri matrisinin Mathcad mühitində hesablanması listinqi aşağıda verilmişdir.

$$A := \begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$A^2 = \begin{pmatrix}
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$A^3 = \begin{pmatrix}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$
\[
A^4 = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

\[
A^5 = \begin{pmatrix}
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

\[n := \text{rows}(A)\]
\[E := \text{identity}(n)\]
\[\text{ORIGIN} := 1\]

\[B := E + \sum_{i=1}^{n} A^i\]

\[
E = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]
\[
B = \begin{pmatrix}
2 & 2 & 2 & 2 & 1 \\
2 & 2 & 2 & 2 & 1 \\
2 & 2 & 2 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

\[i := 1..n\]
\[j := 1..n\]
\[C_{i,j} := \text{if } (B_{i,j} > 0,1,0)\]

\[
C = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

\[
L := C^T = \begin{pmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1
\end{pmatrix}
\]
\[S_{i,j} := C_{i,j} \cdot L_{i,j} \]
\[
S = \begin{pmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

2. Qrafın maksimal möhkəm əlaqəli altqraflara ayırılınınin Malqranj üsulu

Malqranj üsulu qrafın təpələrinin tranzitiv qapanması anlayışına əsaslanır.

Tutaq ki, \(G = (X, F) = (X, F^{-1}) \) qrafı verilir, burada \(F \) və onun tərsi \(F^{-1} \) təpələrin birqiymətlə olmayan ini-kaslarıdır, yəni \(Fx_i \) çoxluğu \(x_i \) təpəsindən çıxan və \(x_j \) təpəsində daxil olan tillərin son təpələr çoxləşdirməlidir, \(F^{-1}x_i \) isə çoxluğu \(x_i \) təpəsində daxil olan \((x_i, x_j)\) tillərinin son təpələr çoxləşdirməlidir.

\[\forall x_i \in X \text{ təpəsinin tranzitiv qapanması } \hat{F}_{tr}x_i \text{ və ya } \hat{F}_{tr}^{-1}x_i \text{ kimi işarə olunur və} \]

\[\hat{F}_{tr}x_i = \{x_i\} \cup Fx_i \cup F^2x_i \cup \ldots \cup F^kx_i \cup \ldots \]
\[\hat{F}_{tr}^{-1}x_i = \{x_i\} \cup F^{-1}x_i \cup F^{-2}x_i \cup \ldots \cup F^{-k}x_i \cup \ldots \]

birləşmələrindən ibarətdir, burada \(F^kx_i = F(F^{k-1}x_i) \) və ya \(F^{-k}x_i = F^{-1}(F^{-(k-1)}x_i) \) kimi başa düşülür.
Misal 5.4. Verilən qrafının x_1 tərəsinin $\hat{F}_r x_1$ və $F^{-1}_{tr} x_1$ tranzitiv qapanmalarını təyin edin.

$$X = \{x_1, x_2, x_3, x_4\}.$$

![Diagram](image)

- $Fx_1 = \{x_2\}$,
 $F^{-1} x_1 = \{x_3\}$,
- $Fx_2 = \{x_2, x_3\}$,
 $F^{-1} x_2 = \{x_1, x_2\}$,
- $Fx_3 = \{x_1, x_4\}$,
 $F^{-1} x_3 = \{x_2\}$,
- $Fx_4 = \emptyset$,
 $F^{-1} x_4 = \{x_3\}$.

- $F^2 x_1 = F(Fx_1) = F\{x_2\} = Fx_2 = \{x_2, x_3\}$,
- $F^3 x_1 = F(F^2 x_1) = F\{x_2, x_3\} = Fx_2 \cup Fx_3 = \{x_2, x_3\} \cup \{x_1, x_4\} = \{x_1, x_2, x_3, x_4\}$,
- $F^4 x_1 = F(F^3 x_1) = F\{x_1, x_2, x_3, x_4\} = Fx_1 \cup Fx_2 \cup Fx_3 \cup Fx_4 = \{x_1, x_2, x_3, x_4\}$.

Deməli,

$$\hat{F}_r x_1 = \{x_1\} \cup Fx_1 \cup F^2 x_1 \cup F^3 x_1 \cup F^4 x_1 = \{x_1\} \cup \{x_2\} \cup \{x_2, x_3\} \cup \{x_1, x_2, x_3, x_4\} \cup \{x_1, x_2, x_3, x_4\} = \{x_1, x_2, x_3, x_4\}.$$
Analoji olaraq, $F_{tr}^{-1} x_i$-i hesablayaq:

$F^{-1} x_1 = \{x_3\}$,

$F^{-2} x_1 = F^{-1}(F^{-1} x_1) = F^{-1}\{x_3\} = F^{-1} x_3 = \{x_2\}$,

$F^{-3} x_1 = F^{-1}(F^{-2} x_1) = F^{-1}\{x_2\} = F^{-1} x_2 = \{x_1, x_2\}$,

$F^{-4} x_1 = F^{-1}(F^{-3} x_1) = F^{-1}\{x_1, x_2\} =$

$= F^{-1} x_1 \cup F^{-1} x_2 = \{x_3\} \cup \{x_1, x_2\} = \{x_1, x_2, x_3\}$.

Deməli,

$F_{tr}^{-1} x_1 = \{x_1\} \cup F^{-1} x_1 \cup F^{-2} x_1 \cup F^{-3} x_1 \cup F^{-4} x_1 =$

$= \{x_1\} \cup \{x_3\} \cup \{x_2\} \cup \{x_1, x_2\} \cup \{x_1, x_2, x_3\} =$

$= \{x_1, x_2, x_3\}$.

Indi isə Malqranj üsulu ilə verilən $G = (X, F) = (X, F^{-1})$ qrafını onun maksimal möhkəm əlaqəli altqraflara ayırılışını verək.

Tutaq ki, G qrafında $X = \{x_1, x_2, \ldots, x_n\}$ təpələp çoxluğudur. Bu təpələp çoxluğunu onların $F_{tr} x_i$ və $F_{tr}^{-1} x_i$ tranzitiv qapanmalarının vasitəsilə kəsişmeyən altçoxlulara (siniflərə) bölmək üçün belə addımlar atılır:

Addım 1. $\forall x \in X$ üçün $F_{tr} x_i$ və $F_{tr}^{-1} x_i$ təpilir və

$K_1(x_i) = F_{tr} x_i \cap F_{tr}^{-1} x_i$

təyin olunur.

Addım 2. $x_j \notin K_1(x_i)$ təpəsi götərilər və
\[K_2(x_j) = F_{tr} x_j \cap F_{tr}^{-1} x_j \]
təyin olunur.

Addım 3. \(x_k \notin K_2(x_j) \) təpəsi götürülür və

\[K_3(x_k) = F_{tr} x_k \cap F_{tr}^{-1} x_k \]
təyin olunur və s. Proses qalan təpələr qurtarana qədər dəvə dəvə etdirilir. Nəticədə \(G \) qrafının kəsişməyən \(K_1(x_i) \), \(K_2(x_j) \), \ldots, \(K_m(x_s) \) altçoxluqlarını alırıq. Bu altçoxluqlar axtarılan maksimal möhkəm əlaqəli altqrafların uyğun altçoxluqlarını dəyişən.

Malqranj üsulu yuxarıda bəxdirilmiş Misal 5.3-ədəki qraf üçün nümayiş etdirək.

Misal 5.5. Verilən qrafı Malqranj üsulu ilə maksimal möhkəm əlaqəli altqraflara ayırın.

\[Fx_1 = \{x_2\}, \quad F^{-1}x_1 = \{x_3\}, \]
\[Fx_2 = \{x_4, x_3\}, \quad F^{-1}x_2 = \{x_1\}, \]
\[Fx_3 = \{x_1\}, \quad F^{-1}x_3 = \{x_2\}, \]
\[Fx_4 = \{x_5\}, \quad F^{-1}x_4 = \{x_2\}, \]
\[Fx_5 = \emptyset, \quad F^{-1}x_5 = \{x_4\}. \]
1) \(F_{1r} x_1 = \{x_1\} \cup Fx_1 \cup F^2x_1 \cup F^3x_1 \cup \ldots \)

\[F^2x_1 = F(Fx_1) = F\{x_2\} = Fx_2 = \{x_3, x_4\}, \]

\[F^3x_1 = F(F^2x_1) = F\{x_3, x_4\} = Fx_3 \cup Fx_4 = \{x_1\} \cup \{x_5\} = \{x_1, x_5\}, \]

\[F^4x_1 = F(F^3x_1) = F\{x_1, x_5\} = Fx_1 \cup Fx_5 = \{x_2\} \cup \emptyset = \{x_2\}, \]

\[F^5x_1 = F(F^4x_1) = F\{x_2\} = Fx_2 = \{x_3, x_4\}, \]

\[F^6x_1 = F(F^5x_1) = F\{x_3, x_4\} = Fx_3 \cup Fx_4 = \{x_1\} \cup \{x_5\} = \{x_1, x_5\}. \]

\(\hat{F}_{1r} x_1 = \{x_1\} \cup Fx_1 \cup F^2x_1 \cup F^3x_1 \cup F^4x_1 \cup \ldots \)

\[\cup F^5x_1 \cup F^6x_1 = \{x_1\} \cup \{x_2\} \cup \{x_3, x_4\} \cup \{x_1, x_5\} = \{x_1, x_2, x_3, x_4, x_5\}. \]

\(\hat{F}_{1r}^{-1} x_1 = \{x_1\} \cup F^{-1}x_1 \cup F^{-2}x_1 \cup F^{-3}x_1 \cup \ldots \)

\[F^{-1}x_1 = \{x_3\}, \]

\[F^{-2}x_1 = F^{-1}(F^{-1}x_1) = F^{-1}\{x_3\} = F^{-1}x_3 = \{x_2\}, \]

\[F^{-3}x_1 = F^{-1}(F^{-2}x_1) = F^{-1}\{x_2\} = F^{-1}x_2 = \{x_1\}, \]

\[F^{-4}x_1 = F^{-1}(F^{-3}x_1) = F^{-1}\{x_1\} = F^{-1}x_1 = \{x_3\}. \]

\[F^{-5}x_1 = F^{-1}(F^{-4}x_1) = F^{-1}\{x_3\} = F^{-1}x_3 = \{x_2\}. \]

\[F^{-6}x_1 = F^{-1}(F^{-5}x_1) = F^{-1}\{x_2\} = F^{-1}x_2 = \{x_1\}. \]
\[F_{tr}^{-1} x_1 = \{ x_1 \} \cup \{ x_3 \} \cup \{ x_2 \} \cup \{ x_1 \} \cup \{ x_3 \} \cup \{ x_2 \} \cup \{ x_1 \} = \{ x_1, x_2, x_3 \} \].

Beləliklə, aldığ ki,
\[F_{tr}^{-1} x_1 = \{ x_1, x_2, x_3, x_4, x_5 \}, \quad F_{tr}^{-1} x_1 = \{ x_1, x_2, x_3 \} \]
\[K_1(x_1) = F_{tr} x_1 \cap F_{tr}^{-1} x_1 = \{ x_1, x_2, x_3, x_4, x_5 \} \cap \{ x_1, x_2, x_3 \} = \{ x_1, x_2, x_3 \} . \]

2) \(x_4 \notin K_1(x_1) \) və \(F_{tr} x_4, F_{tr}^{-1} x_4 \) tranzitiv qapanmalarını təyin edək.
\[Fx_4 = \{ x_5 \} , \]
\[F^2 x_4 = F(Fx_4) = F \{ x_5 \} = Fx_5 = \emptyset . \]
\[F_{tr}^{-1} x_4 = \{ x_4 \} \cup Fx_4 \cup F^2 x_4 \cup F^3 x_4 = \{ x_4 \} \cup \{ x_5 \} \cup \emptyset = \{ x_4, x_5 \}. \]
\[F^{-1} x_4 = \{ x_2 \}. \]
\[F^{-2} x_4 = F^{-1}(F^{-1} x_4) = F^{-1} \{ x_2 \} = F^{-1} x_2 = \{ x_1 \} , \]
\[F^{-3} x_4 = F^{-1}(F^{-2} x_4) = F^{-1} \{ x_1 \} = F^{-1} x_1 = \{ x_3 \} , \]
\[F^{-4} x_4 = F^{-1}(F^{-3} x_4) = F^{-1} \{ x_3 \} = F^{-1} x_3 = \{ x_2 \} . \]
\[F^{-5} x_4 = F^{-1}(F^{-4} x_4) = F^{-1} \{ x_2 \} = F^{-1} x_2 = \{ x_1 \} . \]
\[F^{-6} x_4 = F^{-1}(F^{-5} x_4) = F^{-1} \{ x_1 \} = F^{-1} x_1 = \{ x_3 \} . \]

Deməli,
\[F_{tr}^{-1} x_4 = \{ x_4 \} \cup F^{-1} x_4 \cup F^{-2} x_4 \cup F^{-3} x_4 \cup \ldots = \]
\[K_2(x_4) = \hat{F} \cap F^{-1} x_4 = \{ x_4, x_5 \} \cap \{ x_1, x_2, x_3, x_4 \} = \{ x_4 \}. \]

3) \(x_5 \notin K_2(x_4) \) və \(\hat{F} x_5, F^{-1} x_5 \) tranzitiv qapanma-llarını təyin edək.

\(Fx_5 = \emptyset, \)

\(F^2 x_5 = F(Fx_5) = F\emptyset = \emptyset. \)

\(\hat{F} x_5 = \{ x_5 \} \cup Fx_5 \cup F^2 x_5 = \{ x_5 \} \cup \emptyset = \{ x_5 \}. \)

\(F^{-1} x_5 = \{ x_4 \}. \)

\(F^{-2} x_5 = F^{-1}(F^{-1} x_5) = F^{-1} \{ x_4 \} = F^{-1} x_4 = \{ x_2 \}, \)

\(F^{-3} x_5 = F^{-1}(F^{-2} x_5) = F^{-1} \{ x_2 \} = F^{-1} x_2 = \{ x_1 \}, \)

\(F^{-4} x_5 = F^{-1}(F^{-3} x_5) = F^{-1} \{ x_1 \} = F^{-1} x_1 = \{ x_3 \}. \)

\(F^{-5} x_5 = F^{-1}(F^{-4} x_5) = F^{-1} \{ x_3 \} = F^{-1} x_3 = \{ x_2 \}. \)

\(F^{-6} x_5 = F^{-1}(F^{-5} x_5) = F^{-1} \{ x_2 \} = F^{-1} x_2 = \{ x_1 \}. \)

\(\hat{F} x_5 = \{ x_5 \} \cup F^{-1} x_5 \cup F^{-2} x_5 \cup F^{-3} x_5 \cup \ldots = \)

\[= \{ x_5 \} \cup \{ x_4 \} \cup \{ x_2 \} \cup \{ x_1 \} \cup \{ x_3 \} \cup \]

\[\cup \{ x_2 \} \cup \{ x_1 \} = \{ x_1, x_2, x_3, x_4, x_5 \}. \]

\[K_3(x_5) = \hat{F} x_5 \cap F^{-1} x_5 = \]

\[= \{ x_5 \} \cap \{ x_1, x_2, x_3, x_4, x_5 \} = \{ x_5 \}. \]

Beləliklə, Malqranj usulu da əvvəl aldığımız üç
məhkəm əlaqəli altqrafların uyğun təpələr çoxluğunu verdi, ən

\[K_1(x_1) = \{x_1, x_2, x_3\}, \quad K_2(x_4) = \{x_4\} \quad \text{və} \quad K_3(x_5) = \{x_5\}, \]

burada \(K_1(x_1) - x_1 \) təpəsinin, \(K_2(x_4) - x_4 \) təpəsinin və \(K_3(x_5) - x_5 \) təpəsinin daxil olduğuları məhkəm əlaqəli altqrafların təpələr çoxluğlardır.

5.2. Qrafı hissələrə ayırılan təpələr və tillər. Blok qraflar. Təpəyə və tilla görə əlaqəlilik

Tutaq ki, \(G = (X, U) \) qraf verilir. Əgər bu qrafın hər hansı \(x_i \in X \) təpəsini atdıqda qrafın əlaqəlilik komponentlərinin (təşkiledicilərinin) sayı artırarsa, onda \(x_i \) təpəsinə qrafı hissələrə \textit{ayırılan təpə} və ya sadəcə olaraq \textit{ayırıcı təpə} deyilir.

Əgər G qrafında onun hər hansı \((x_i, x_j) \in U\) tilini atdıqda qrafın əlaqəlilik komponentlərinin sayı artırarsa, onda belə \((x_i, x_j)\) tilinə \textit{körpücük} deyilir.

Ayırıcı təpələri (nöqtələri) olmayan əlaqəli qrafa \textit{blok} deyilir.

Məsələn, aşağıdağı qrafda

![Qraf](image)

1) \(d, e\) – təpələri ayırıcı təpələrdir ve başqa belə təpələr yoxdur;

2) \((d, e)\) – tili körpücükdür və başqa belə tillər yoxdur;
3) Təpələr çoxluğu uyğun olaraq \{a,b,c,d\}, \{k,m,e\}, \{e,ℓ,t\} olan alqraflar – blokdurlar və başqa belə bloklar yoxdur.

Qrafdan göründüyü kimi, ayırcı təpələr körpücük olan tıla insidentdirlər, amma belə olmaya da bilər.

Teorem 5.2. Əgər hər hansı \(x\) təpəsi qrafda körpücüyə insidentdirsə və asılımsız təpə deyildirsə, onda bu \(x\) təpəsi ayıricidir.

Tərif 5.4. Aradan qaldırılmasız \(G\) qrafını əlaqəsiz və ya yalnız təpələrdən ibarət olan \(G_0\) qrafına gətirən \(təpələrin\ \ən\ \kiçik\ \sayına\ \(G\) qrafının \(təpəyə\ \göə\ \əlaqəliliyi\) deyilir və \(χ(G)\) kimi işarə olunur.

Məsələn,
1) əgər \(χ(G) = 0\) olarsa, onda \(G\) qrafı əlaqəsizdir;
2) əgər \(χ(G) = 1\) olarsa, onda \(G\) qrafında bir ayırcı təpə var;
3) əgər \(χ(K_n) = n - 1\) olarsa, onda \(G\) qrafı tam qrafdır, burada \(n - təpələrin\) sayıdır.

Tərif 5.5. \(G\) qrafinda aradan qaldırılmasız ilə bu qrafı əlaqəsiz və ya yalnız təpələrdən ibarət olan \(G_0\) qrafına gətirən \(tillərin\ \ən\ \kiçik\ \sayına\ \(G\) qrafının \(tılə\ \göə\ \əlaqəliliyi\) deyilir və \(λ(G)\) kimi işarə olunur.

Məsələn,
1) əgər \(λ(G) = 0\) olarsa, onda \(G\) qrafı əlaqəsiz qrafdır;
2) əgər \(λ(G) = 1\) olarsa, onda \(G\) qrafında körpücük var;
3) əgər \(\lambda(G) = m - 1 \) olarsa, onda \(G \) qrafı tam qrafıdır, burada \(m \) – tillərin sayıdır.

Teorem 5.3. Əgər \(\delta(G) \) – qrafın təpələrin dərəçələrindən ən kiçiyidirə, onda
\[
\chi(G) \leq \lambda(G) \leq \delta(G)
\]
münasibəti doğrudur.

Teorem 5.4. Əgər \(n \) – qrafın təpələrinin sayı, \(m \) – tillərinin sayı, \(k \) – əlaqəlilik komponentlərinin sayıdırса, onda
\[
(n-k)(n-(k-1)) \leq m \leq \frac{(n-k)(n-(k-1))}{2}
\]
münasibəti doğrudur.

Çalışmalar 5

5.1. Çatdırma və əksçatdırma matrisləri vasitəsilə \(G \) qrafını maksimal möhkəm əlaqəli altqraflara ayırın.

1) \(x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \)

2) \(x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \)

3) \(x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \)

4) \(x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \)

65
5.2. G qrafında $F^3 x_1$, $F^{-3} x_1$, $F^3 x_2$, $F^{-3} x_2$, $F^3 x_3$, $F^{-3} x_3$, $F^3 x_4$, $F^{-3} x_4$ inikasları olan təpələr çoxluqlarını tapın.

1)

2)

3)

4)

5)

6)

7)

8)
5.3. Malqranj usulu ilə G qrafını maksimal möhkəm əlaqəli altqrafalara ayırın.

1)

2)

3)

4)

5)

6)
6. Qrafarda məsafə xarakteristikaları

Yuxarada qeyd etdik ki, marşrutu (yolu) təşkil edən tillərin sayına onun uzunluğunu deyilir.

İstiqlamətənəmməmiş G əlaqəli qrafında ən qısa uzunluqlu \((x_i, x_j)\) – marşruta \(x_i\) və \(x_j\) təpələrə arasında məsafə deyilir və \(\rho(x_i, x_j)\) kimi işarə olunur, burada \(i = j\) olduğu zaman \(\rho(x_i, x_j) = 0\).

Aydındır ki, belə təyin olunan məsafə anlayışını metrikanın aşağıdakı aksiomlarını ödəyir:

Aksiom 1. \(\forall x_i, x_j \in X\) üçün \(\rho(x_i, x_j) \geq 0\);

Aksiom 2. \(\rho(x_i, x_j) = 0 \Rightarrow x_i = x_j\);

Aksiom 3. \(\rho(x_i, x_j) = \rho(x_j, x_i)\) – simmetriklik;

Aksiom 4. \(\rho(x_i, x_j) \leq \rho(x_i, x_k) + \rho(x_k, x_j)\) (üçbucaq bərabərsizliyi).

Əgər G qrafında \(X = \{x_1, x_2, \ldots, x_n\}\) olarsa, onda \(P = (p_{ij})\) mətrisinə G qrafının məsafələr matrisi deyilir, burada \(p_{ij} = \rho(x_i, x_j)\).

Aydındır ki, \(P = P^T\), yəni \(P\) – simmetrik matrisdir.

Tərif 6.1. Qeyd olunmuş istənilən \(x \in X\) təpəsi üçün

\[e(x) = \max \{\rho(x, x_j) | x_j \in X\} \]

ədə pieniądze x təpəsinin eksentrəsiləti deyilir.

Demələ, hər hansı x təpəsinin eksentrəsiləti bu təpədən qrafın on uzaqlaşımış təpəsinə qədər olan məsafəsinə bərabərdir. Əgər \(P\) matrisi məsafələr matrisidirsə, onda
$e(x_i)$ eksentrisiteti matrisin i-ci sətrində duran əpəd-lərdən ən böyüküncə bərabərdir.

Tərəf 6.2. G qrafının təpələrinin eksentrisitetlərin-dən ən böyüküncə onun **diametri** deyilir və $d(G)$ kimi işarə olunur:

$$d(G) = \max_{x_i \in X} e(x_i) = \max_{x_i \in X} \max_{x_j \in X} \rho(x_i, x_j).$$

Tərəf 6.3. Əgər hər hansı x təpəsi üçün $e(x) = d(G)$ olarsa, onda x təpəsi G qrafının onun **ən ucqar təpəsi** adlanır.

Tərəf 6.4. G qrafının təpələrinin eksentrisitetlərin-dən ən kiçiyinə onun **radiusu** deyilir və $r(G)$ kimi işarə olunur:

$$r(G) = \min_{x_i \in X} e(x_i) = \min_{x_i \in X} \max_{x_j \in X} \rho(x_i, x_j).$$

Tərəf 6.5. Əgər hər hansı x təpəsi üçün $e(x) = r(G)$ olarsa, onda x təpəsi onun **mərkəzi** adlanır (minimal eksentristetə malik olan təpələr).

Qrafın bir neçə mərkəzi ola bilər.

Misal. G qrafı özünün məsafələr P matrisi ilə verilir:

$$P = \begin{bmatrix}
 x_1 & x_2 & x_3 & x_4 & x_5 \\
 x_1 & 0 & 2 & 3 & 1 & 4 \\
 x_2 & 2 & 0 & 1 & 2 & 3 \\
 x_3 & 3 & 1 & 0 & 1 & 2 \\
 x_4 & 1 & 2 & 1 & 0 & 5 \\
 x_5 & 4 & 3 & 2 & 5 & 0
\end{bmatrix}$$
Qeyd. Əgər G qrafının təpələrində və ya təllərinə qarşı bir ədəd qoyulursa, onda belə qraf **yüklü** və **çəkili** qraf adlanır. Aydındır ki, hər hansı $\mu(x_i,x_j)$ marşrutunun yüklü (çəkisi) onu təşkil edən təpələrin və ya təllərin yükləri (çəkələr) cəminə bərabərdir. Belə olduqda qraf-lar (yüklü) üzərində ekstremal məsələlər qoymaq olar.
Çalışmalar 6

Çəki matrisləri ilə verilmiş qrafərdə $e(x_i)$, $d(G)$ və $r(G)$ məsafə xarakteristikalarını tapın.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1) [0 3 2 1]</td>
<td>2) [0 5 4 7 6]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 0 4 2</td>
<td>5 0 3 5 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 4 0 3</td>
<td>4 3 0 6 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 2 3 0</td>
<td>7 5 6 0 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 1 8 2 0</td>
<td></td>
</tr>
<tr>
<td>3) [0 1 4 3]</td>
<td>4) [0 7 3 8]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 0 5 2</td>
<td>7 0 4 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 5 0 6</td>
<td>3 4 0 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 2 6 0</td>
<td>8 5 6 0</td>
<td></td>
</tr>
<tr>
<td>5) [0 4 3 2 5]</td>
<td>6) [0 8 4 3 2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 0 6 7 9</td>
<td>8 0 3 6 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 6 0 8 4</td>
<td>4 3 0 9 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 7 8 0 7</td>
<td>3 6 9 0 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 9 4 7 0</td>
<td>2 7 10 6 0</td>
<td></td>
</tr>
</tbody>
</table>
7) \[
\begin{bmatrix}
0 & 8 & 10 & 9 & 6 & 7 \\
8 & 0 & 7 & 3 & 4 & 5 \\
10 & 7 & 0 & 5 & 3 & 1 \\
9 & 3 & 5 & 0 & 2 & 3 \\
6 & 4 & 3 & 2 & 0 & 9 \\
7 & 5 & 1 & 3 & 9 & 0 \\
\end{bmatrix}
\]

8) \[
\begin{bmatrix}
0 & 2 & 1 & 3 & 4 \\
2 & 0 & 4 & 5 & 6 \\
1 & 4 & 0 & 3 & 2 \\
3 & 5 & 3 & 0 & 7 \\
4 & 6 & 2 & 7 & 0 \\
\end{bmatrix}
\]

9) \[
\begin{bmatrix}
0 & 3 & 3 & 2 \\
3 & 0 & 4 & 5 \\
3 & 4 & 0 & 6 \\
2 & 5 & 6 & 0 \\
\end{bmatrix}
\]

10) \[
\begin{bmatrix}
0 & 6 & 4 & 2 \\
6 & 0 & 4 & 3 \\
4 & 4 & 0 & 5 \\
2 & 3 & 5 & 0 \\
\end{bmatrix}
\]
7. Qraflarda ekstremal məsələlər və onların həll üsulları

Tutaq ki, istiqamətlənmiş $G = (X, U)$ qrafı verilir və bu qrafda hər hansı bir qeyd olunmuş x_i təpəsindən (adətən belə təpə mənəbə elan edilir) olan en qısa (ən uzun) marşrutu (yolu) tapmaq məsələsi qoyulur. Belə qraflar çəkilə və ya yüklü qraflardır, yəni təpələrinə və ya tillərinə qarşı müəyyən edələr (yüklər) qarşı qoyulur. Belə ekstremal məsələlərin həlli üçün müəyyən alqorimlər vardır. Onlardan bəzi ilə tanış olmaq.

7.1. Qraflarda ekstremal yolların təşkil olması üçün Şimbell üsulu

Tutaq ki, $G = (X, U)$ istiqamətlənmiş yüksək (çəkili) qrafı verilir və tillərin yüksəkləri (çəkili) onların üzərində kiçik mətərizələr icarəsində yazılır. Çəkili matrisini $W = (w_{ij})$ ilə işarə edək. Qrafın hər hansı iki x_i və x_j təpələri arasında en qısa (minimal) və ya en uzun (maksimal) yolların təşkil oluna məsələsinin həlli üçün keçməzən evvel G qrafının təpələrinin qənşələşdir A mətrisi üzərində aşağıdakı iki əməli təyin edək.

1-ci əməl. Qrafının təpələrinin qənşələşdir A mətrisinin qüvvət yüksəldərkən onun i-ci sətir elementlərini a_{ik}-lərin hər hansı j-cu sütun elementlərini a_{js}-lərə hasilərini onların cəmi kimi yazaq:

$$a_{ik} \cdot a_{js} = a_{js} \cdot a_{ik} \Rightarrow a_{ik} + a_{js} = a_{js} + a_{ik},$$

$$a_{ik} \cdot 0 = 0 \cdot a_{ik} = 0 \Rightarrow a_{ik} + 0 = 0 + a_{ik} = 0,$$
yəni toplananlardan biri sıfırdırsa, onda cəm də sıfıra bərabərdir.

2-ci əməl. İki \(a_{ik} \) və \(a_{js} \) elementlərinin cəmi onlardan ən kiçiyən (ən böyükənə) bərabərdir:

\[
 a_{ik} + a_{js} = \min \{ a_{ik}, a_{js} \} \quad (və ya \max \{ a_{ik}, a_{js} \}),
\]

burada sıfır inkar olunur. Minimal (və ya maksimal) element sıfır olmayan elementlər içərisindən seçilir. Əgər elementlərin hamisi sıfırdırsa, onda seçilən element də sıfır olur.

Təyn olunmuş 1-ci və 2-ci əməllərdən istifadə edərək \(G \) qrafının çəki \(W \) matrisini qüvvətə yüksəltmişə onun hər hansı iki tərəfi arasında ən qısa (minimal) və ya ən uzun (maksimal) yolları tapmaq olar. Məqsəd, \(W^2 \) matrisinin elementlərini (1-ci və 2-ci əməllərə görə) belə hesablamanıq:

a) minimal (ən qısa) yollar hesablanarkən:

\[
 w_{ij}^{(2)} = \min \{ (w_{i1}^{(1)} + w_{1j}^{(1)}), (w_{i2}^{(1)} + w_{2j}^{(1)}), \ldots, (w_{in}^{(1)} + w_{nj}^{(1)}) \};
\]

b) maksimal (ən uzun) yollar hesablanarkən isə:

\[
 w_{ij}^{(2)} = \max \{ (w_{i1}^{(1)} + w_{1j}^{(1)}), (w_{i2}^{(1)} + w_{2j}^{(1)}), \ldots, (w_{in}^{(1)} + w_{nj}^{(1)}) \}.
\]

Analoji olaraq \(W^k \) matrisinin də \(w_{ij}^{(k)} \) elementlərə də belə hesablana bilər.

Aydındır ki, çəki matrisinin \(W^k \) qüvvəti tillərinin sayı \(k \) olan (minimal və ya maksimal) marşrutların (yolların) uzunluqlarıdır.

Misal 7.1. Şimbell üsulu ilə aşağıda verilmiş qrafda üç tildən ibarət ən qısa yolları tapın.
\[W = \begin{pmatrix}
0 & 1 & 3 & 2 \\
2 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0
\end{pmatrix} \]

Həlli. \(W^2 \) matrisinin elementlərini təyin edərək 1-ci və 2-ci əməllərdən istifadə edək.

\[
W^2 = \begin{pmatrix}
0 & 1 & 3 & 2 \\
2 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0
\end{pmatrix} \cdot \begin{pmatrix}
0 & 1 & 3 & 2 \\
2 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0
\end{pmatrix} = \begin{pmatrix}
3 & 4 & 3 & 0 \\
0 & 3 & 5 & 4 \\
0 & 0 & 0 & 0 \\
4 & 0 & 4 & 0
\end{pmatrix},
\]

burada, məsələn, \(w_{23}^{(2)} \) elementi belə hesablandı:

\[
w_{23}^{(2)} = \min \{(w_{21}^{(1)} + w_{13}^{(1)}), (w_{22}^{(1)} + w_{23}^{(1)}), (w_{23}^{(1)} + w_{33}^{(1)}), (w_{24}^{(1)} + w_{43}^{(1)})\} = \\
= \min \{(2 + 3), (0 + 2), (2 + 0), (0 + 1)\} = \min \{5, 0, 0, 0\} = 5,
\]

burada sıfırlar inkar olunur, yəni sıfırdan fərqli ədədlər-dən ən kiçiyi götürülür.

\(W^2 \) matrisinin elementləri uzunluğu ən qısa olan 2 tilden ibarət \(\rho_w(x_i, x_j) = w_{ij} \) – marşrutlərdir (yollardır).

\[
W^3 = W^2 \cdot W = \begin{pmatrix}
3 & 4 & 3 & 0 \\
0 & 3 & 5 & 4 \\
0 & 0 & 0 & 0 \\
4 & 0 & 4 & 0
\end{pmatrix} \cdot \begin{pmatrix}
0 & 1 & 3 & 2 \\
2 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0
\end{pmatrix} = \begin{pmatrix}
6 & 3 & 6 & 5 \\
5 & 6 & 5 & 0 \\
0 & 0 & 0 & 0 \\
0 & 5 & 7 & 0
\end{pmatrix}
\]

Beləliklə, məsələn, aldığ ki, A təpəsindən D təpəsi-
记者了解 ibarat ABAD yolunun uzunluğu 5-dir, B təpəsindən B təpəsine üç tilden ibarat BADB ən qısa yolun uzunluğu 6-dir, D təpəsindən C təpəsine üç tilden ibarat DBAC yolunun uzunluğu 7-dir və s.

7.2. Qraflarda ən qısa yolların Deykstra alqoritmi ilə tapılması

Belə fərəz edək ki, istiqamətlənmiş G qrafında ən azı bir əx 0 təpəsi var ki, bu təpəyə heç bir til daxil olmur (əgər belə bir təpə yoxdursa, onda sənii olaraq təpələr çoxluğunu X-ə belə bir təpə daxil etmək olar və bu təpədən çıxan tilin yükününü (çəkisini) sıfır götürmək lazımdır). Eləcə də mənsəb olan, yəni ondan heç bir til çıxmayan əx_i son təpəni təyin etmək olar. əx_0 təpəsini mənbə (bașłąnçıc), əx_i-ni ise mənsəb (son) təpə adlandırək. əx_0 təpəsi ilə əx_i təpəsi arasından ən qısa və ya ən uzun yolların tapılması üçün müxtəlif alqoritmlər var. Belə alqoritmlərdən biri Deykстра alqoritmidir. Deykstra alqoritinin şərti belədir ki, qrafın yükləri (çəkiləri) mənfi olmayan ədədlərdir. Deykstra alqoritmini bəzən qrafin təpələrini isərələmə alqoritmi de adlandırırlar, yəni bu alqoritin iş prosesində qrafın əx_i X təpəsinə d(əx_i) isərələri verilir. Bu ədədlər başلانğıç əx_0 təpəsindən əx_i təpəsine olan ən qısa yolun uzunluğu ola bilər. Belə isərələr iki vəziyyətdə, yəni müvəqqət və ya daimi ola bilər. İsərələrin müvəqqəti vəziyyətdən daimi vəziyyətə çevrilməsi o deməkdir ki, başلانğıç əx_0 təpəsindən uyğun nəzərdə tutulan təpəyə ən qısa məşafə tapılıb.
Deykstra alqoritmi iki mərhələdən ibarətdir: birinci mərhələdə en qısa yolun uzunluğu tapılır, ikinci mərhələdə isə bu yolun özü qurulur.

Mərhələ 1. Ən qısa uzunluqlu yolun tapılması.

Addım 1. Təpələrə başlanğıc işarələrin verilməsi.

Başlanğıc x_0 təpəsinə $d(x_0) = 0$ * işarəsi verilir, burada * simvolu işarənin dəyişən dəyəri deməkdir. Qalan təpələrə isə $d(x_i) = \infty$, $x_i \neq x_0$, işarəsi verilir və bu işarələr müvəqqəti olan edilir, yəni onlar iş prosesində dəyişən işarələrdir. Cari, yəni növbəti baxılan təpəni \tilde{x} kimi işarə edək və tutaq ki, $\tilde{x} = x_0$.

Addım 2. İşarələrin dəyişdirilməsi.

Cari \tilde{x} təpəsindən bilavasitə sonra gelen müvəqqəti işarəli hər bir x_i təpəsinin işarəsi belə bir qaydada dəyişir:

$$d_{yeni}(x_i) = \min\{d_{kəhna}(x_i), d(\tilde{x}) + w(\tilde{x}, x_i)\},$$

(1)

burada $w(\tilde{x}, x_i) - (\tilde{x}, x_i)$ tilinin çəkisidir (məşafəsidir).

Addım 3. İşarələrin müvəqqətilikdən daimiliyə çevriləməsi.

Müvəqqəti işarələri olan bütün təpələr dəqiqindən en kiçik işarə qiyməti olan x^* təpəsini seçək:

$$d(x^*) = \min\{d(x_j) | x_j \in X, \ d(x_j) - müvəqqətidir\}$$

(2)

Bu işarəni dəyişən edilir $\tilde{x} = x^*$ yazaq.

Əgər $\tilde{x} = x_i$ alınmışsa, onda $d(\tilde{x})$ edədi axtarılan
x₀ təpəsindən son xₖ təpəsinə olan en qısa yolun uzunluğudur. Əks halda, Addım 2-ya qayıtlıq lazımdır.

Mərhələ 2. Ən qısa yolun qurulması.
Addım 5. Ən qısa yolu təşkil edən tillərin son xₖ təpəsindən x₀ təpəsiisoryamətində ardıcıl axtarılması.

\(\tilde{x} \) təpəsindən bilavasitə əvvəl qələn daimi işarəli təpələr arasında işarəsi

\[d(\tilde{x}) = d(x_i) + w(x_i, \tilde{x}) \]
(3)

şərtini ödəyən xₖ təpəsini tapıq və (xₖ, \(\tilde{x} \)) tilini axtarılan yolun tili hesab edirik və sonra isə \(\tilde{x} = x_i \) götürürük.

Əgər \(\tilde{x} = x_0 \) alınmışsa, onda en qısa yol qurulmuş sayılır. Əks halda, Addım 5-ə qayıdırılır.

Misal 7.2. Verilən qrafda Deykstra alqoritmi ilə x₁ təpəsindən x₆ təpəsinə en qısa yolu tapın.

\[
W =
\begin{bmatrix}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
 x_1 & - & 9 & \infty & 6 & 11 & \infty \\
 x_2 & \infty & - & 8 & \infty & \infty & \infty \\
 x_3 & \infty & \infty & - & \infty & 6 & 9 \\
 x_4 & \infty & 5 & 7 & - & 6 & \infty \\
 x_5 & \infty & 6 & \infty & \infty & - & 4 \\
 x_6 & \infty & \infty & \infty & \infty & \infty & - \\
\end{bmatrix}
\]
Həlli.
Mərhələ 1.
Addım 1. \(d(x_1) = 0^* \), \(\tilde{x} = x_1 \) olsun. Hələlik
\[d(x_2) = d(x_3) = d(x_4) = d(x_5) = d(x_6) = \infty \]

1-ci iterasiya.
Addım 2. \(\tilde{x} = x_1 \) təpəsindən çıxan tillərin bilavasitə daxil olduğu təpələr çoxluğunu \(\tilde{X} = \{x_2, x_4, x_5\} \) götürək və bu təpələrin müvəqqəti işarələrini (1) münasibəti ilə dəyişək:
\[
\begin{align*}
d_{yeni}(x_2) &= \min\{d_{kəhno}(x_2), d(x_1) + w(x_1, x_2)\} = \\
&= \min\{\infty, 0^*+9\} = 9,
\end{align*}
\[
\begin{align*}
d_{yeni}(x_4) &= \min\{d_{kəhno}(x_4), d(x_1) + w(x_1, x_4)\} = \\
&= \min\{\infty, 0^*+6\} = 6,
\end{align*}
\[
\begin{align*}
d_{yeni}(x_5) &= \min\{d_{kəhno}(x_5), d(x_1) + w(x_1, x_5)\} = \\
&= \min\{\infty, 0^*+11\} = 11,
\end{align*}
\]

Addım 3. (2) münasibətində görə müvəqqəti işarələrdən biri daimi işarəyə çevrilməlidir:
\[\min\{9, \infty, 6, 11, \infty\} = 6, \] deməli, \(d(x_4) = 6^* \) və \(\tilde{x} = x_4 \) götürək.
Addım 4. $\tilde{x} = x_4 \neq x_6$ olduğundan Addım 2-ya qayıtdaq.

2-ci iterasiya.

Addım 2. $\tilde{X} = \{x_2, x_3, x_5\}$. Bu təpələrin işarələrini (1) münasibəti ilə dəyişək:

$$d_{yeni} (x_2) = \min \{d_{kəhmə} (x_2), d(x_4) + w(x_4, x_2)\} =$$

$$= \min \{9,6*+5\} = 9,$$

$$d_{yeni} (x_3) = \min \{d_{kəhmə} (x_3), d(x_4) + w(x_4, x_3)\} =$$

$$= \min \{\infty,6*+7\} = 13,$$

$$d_{yeni} (x_5) = \min \{d_{kəhmə} (x_5), d(x_4) + w(x_4, x_5)\} =$$

$$= \min \{11,6*+6\} = 11.$$

Addım 3. x_2, x_3, x_5 təpələrinin müvəqqəti işarələri içerisinde (2)-ya əsasən ən kiçiyini seçək:

$$\min \{d(x_2), d(x_3), d(x_5), d(x_6)\} =$$

$$= \min \{9,13,11, \infty\} = 9* = d(x_2)$$

və $\tilde{x} = x_2$ götürək.

Addım 4. $\tilde{x} = x_2 \neq x_6$ olduğundan Addım 2-ya qayıtdaq.

3-cü iterasiya.

Addım 2. $\tilde{X} = \{x_3\}$. x_3 təpəsinin işarəsini (1) münasibətinə görə dəyişək:

$$d_{yeni} (x_3) = \min \{d_{kəhmə} (x_3), d(x_2) + w(x_2, x_3)\} =$$

$$= \min \{13,9*+8\} = \min \{13,17\} = 13.$$
Addım 3. \(\min \{d(x_3), d(x_5), d(x_6)\} = \min \{13, 11, \infty\} = 11 \) \(= d(x_5) \) və \(\tilde{x} = x_5 \) götürək.

Addım 4. \(\tilde{x} = x_5 \neq x_6 \) olduğundan Addım 2-yə qayıdaq.

4-cü iterasiya.

Addım 2. \(\tilde{X} = \{x_6\} \), \(\tilde{x} = x_6 \).

\[d_{\text{yeni}}(x_6) = \min \{d_{\text{köhnə}}(x_6), d(x_5) + w(x_5, x_6)\} = \]
\[= \min \{\infty, 11 + 4\} = 15. \]

Addım 3. \(\min \{d(x_3), d(x_6)\} = \min \{13, 15\} = 13 \) \(= d(x_3) \) və \(\tilde{x} = x_3 \) götürək.

Addım 4. \(\tilde{x} = x_3 \neq x_6 \) olduğundan Addım 2-yə qayıdaq.

5-ci iterasiya.

Addım 2. \(\tilde{X} = \{x_6\} \),

\[d_{\text{yeni}}(x_6) = \min \{d_{\text{köhnə}}(x_6), d(x_3) + w(x_3, x_6)\} = \]
\[= \min \{15, 13 + 9\} = 15. \]

Addım 3.

\[\min \{d(x_6)\} = \min \{15\} = 15 \) \(= d(x_6) \), \(\tilde{x} = x_6 \).

Addım 4. \(\tilde{x} = x_6 = x_t \). Mərhələ 1-in sonu.

Mərhələ 2.

Addım 5. Daimi işarələri olan və \(x_6 \) təpəsindən bir til əvvəl gələn təpələrin \(\tilde{X} = \{x_3, x_5\} \) çoxluğunu üçün (3) bərabərliyini yoxlaya və \(\tilde{x} = x_6 \) olsun.

\[15 = d(x_6) = d(\tilde{x}) = d(x_5) + w(x_5, x_6) = 11 + 4 = 15, \]
\[15 = d(x_6) = d(\tilde{x}) \neq d(x_3) + w(x_3, x_6) = 13 + 9 = 22. \]
Deməli, qurulan yolun tili olaraq \((x_5, x_6)\) tilini bu yola daxil etmək olar və \(\tilde{x} = x_5\) olsun.

Addim 6. \(\tilde{x} = x_5 \neq x_1\) olduğundan Addim 5-ə qayıtdaq.

Addim 5. \(\tilde{x} = x_5\) təpəsindən bir tətil əvvəl ona daxil olan tiltərin başlanğıcı \(\tilde{X} = \{x_1, x_4\}\) təpələr çoxluğudur və bunun üçün (3) bərabərliyini yoxlayaq.

\[
d(\tilde{x}) = d(x_5) = 11 = d(x_1) + w(x_1, x_5) = 0 + 11 = 11.
\]

\[
d(\tilde{x}) = d(x_5) = 11 \neq d(x_4) + w(x_4, x_5) = 6 + 6 = 12.
\]

\((x_1, x_5)\) tilini qurulan ən qısa yolun tili kimi qəbul edək və \(\tilde{x} = x_1\) olsun.

Addim 6. \(\tilde{x} = x_1\). Mərhələ 2 sona çatdı.

Beləliklə, \(x_1\) təpəsindən \(x_6\) təpəsinədək ən qısa yol \(\mu = [x_1, x_5, x_6]\) alındı və bu yolun çəkisi 15-dir:

\[x_1 \xrightarrow{11} x_5 \xrightarrow{4} x_6\]

Qeyd. Əgər istiqamətlənmiş \(G\) qrafının \(n\) təpəsi varsa, onda bu qrafda Deykstra üsulu ilə ən qısa yolun (marşrutun) tapılması üçün \(n^2\) sayda eməl yerinə yetirilir.

7.3. Qrafarda ən qısa yolların tapılması üçün Bellman-Mur alqoritmi

Əgər istiqamətlənmiş \(G\) qrafında mənfi yüklü istiqamətlənmiş tsikl yoxdusa, onda bu qrafda ən qısa
yol Bellman-Mur alqoritmi ilə tapıla bilər. Bu alqoritmi bəzən təpələrin işarələrini korrekte etmə alqoritmi də adlandırırlar. Deykstra alqoritminə olduğu kimi, təpələrin işarələri daimi və müvəqqəti olan iki hissəyə ayrılır. İşarələrin düzəlisi (korrekturası) belə bir qayda ilə aparılır:

\[d_{\text{yeni}}(x_i) = \min \{ d_{\text{köhnə}}(x_i), d(\vec{x}) + w(\vec{x}, x_i) \}, \quad (*) \]

ancak

\[d(x^*_j) = \min \{ d(x_j) | x_j \in X, \ d_{\text{köhnə}}(x_j) \} \quad (***) \]

təminat vermir ki, tapılan yol ən qısa dır, çünki \(G \) qrafın-də mənfi yükər ola bilən ki, bu işarəni sonrakı addımlarında azaltın. Ona görə də Bellman-Mur alqoritmində müvəqqəti işarənin daimi işarəyə çevirilməsi prosedurası təpələrin növbəsini formalaşdırır və bu təpələrdə (*) qaydəsinə görə növbədə olmayan, lakin bu növbədən bir addım sonra lazım gələn yerə çatacaq təpələrin işarələ-rinin azalmasının imkanını təhli olunur. İş prosesində eyni bir təpə bir neçə dəfə növbəyə düşə bilər və ya onu tərk edə bilər.

Bellman-Mur alqoritmi iki mərhələdən ibarətdir.

Birinci mərhələda başlangıç \(x_0 \) təpəsindən bütün təpələrə apanan ən qısa yollar tapılır. Bu mərhələ növbə-ya düşəcek təpələr olmadığda başa çatır.

İkinci mərhələda giriş adlanan təpə ilə çıxış adlanan təpələr arasındakı ən qısa yol qurulur.

Alqoritmi təşkil edən addımları verək:
Mərhələ 1. x_0 giriş\\ili qrafın qalan təpələri arasıında en qısa yolların uzunluqlarının tapılması.

Addım 1. Başlangıç qiymətlərin mənimsədilməsi.

\[
d(x_0) = 0, \quad d(x_i) = \infty, \quad \forall x_i \in X, \quad x = x_0.
\]

\(Q = \{x\} - növbədə olan təpələr çoxluğu.

Addım 2. İşarələrin və növbənin korrekturasi.

İsarələrin korrektə olunması. Növbənin başlangıçında olan təpəni \(Q\) növbəsindən çəkarır. \(\bar{x}\) təpəsindən bilavasitə \(x_i\) təpəsində düşmək mümkünür, onda \(x_i\) təpəsindəki işarəsini (*) düsturu ilə korrektə edirik. \(\mathcal{E}gər\)

\[
d_{\text{yeni}}(x_i) < d_{\text{kəhənə}}(x_i)
\]

alınarsa, onda təpələrin növbəsini korrektə edirik, əks halda təpələrin seçilməsini və kəhənə işarələrin korrektə olunmasını davam etdiririk.

Növbənin korrektə olunması. \(\mathcal{E}gər\) \(x_i\) təpəsi \(ənvəldə növbədə olmayıbsa və baxılan anda növbədə deyilsə, onda onu növbənin axırına qoyuruz. \(\mathcal{E}gər\) \(x_i\) \(ənvəllər\) nə vaxtsa növbədə olubsa və ya baxılan anda növbədədirsə, onda onu növbənin \(ənvələnine\) keçiririk.

Addım 3. Birinci mərhələnin başa çatmasının yoxlanılması.

\(\mathcal{E}gər\) \(Q \neq \emptyset\) olarsa, onda Addım 2-nin başlangıçına qaydırır. \(\mathcal{E}gər\) \(Q = \emptyset\) olarsa, onda 1-ci mərhələ qurtarmiş hesab olunur, yəni başlangıç \(x_0\) təpəsindən qrafın yerdə qalan bütün təpələrinə qədər olan en qısa məsafələr tapilmiş hesab olunur.

Bellman-Mur alqoritmini misalda nümayış etdirək.
Misal 7.3. G grafi çəki matrisi ilə verilir. Başlanğıc x_1 təpəsindən x_6 təpəsinədək ən qısa yolun uzunluğunu tapın.

$$
W = \begin{bmatrix}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
 x_1 & -4 & \infty & 6 & \infty & \infty \\
 x_2 & \infty & -7 & -8 & 6 & \infty \\
 x_3 & \infty & \infty & -\infty & -7 & 5 \\
 x_4 & \infty & \infty & 8 & -9 & \infty \\
 x_5 & \infty & \infty & \infty & \infty & -3 \\
 x_6 & \infty & \infty & \infty & \infty & -
\end{bmatrix}
$$

Həlli.

Mərhələ 1.

Addim 1.

$$
\bar{x} = x_1, \quad d(x_1) = 0, \\
d(x_2) = d(x_3) = d(x_4) = d(x_5) = d(x_6) = \infty, \\
Q = \{x_1\}.
$$

1-ci iterasiya.

Addim 2. $\bar{x} = x_1$, $Q - \{x_1\} = \emptyset$.

87
\(\tilde{S} \) – çoxluğulu \(x_1 \) ilə bilavasitə qonşu təpələr çoxluğunu olsun: \(\tilde{S} = \{x_2, x_4\} \), onda (*) münasibətinə görə

\[
d_{\text{yeni}}(x_2) = \min\{d_{kəhnə}(x_2), d(\tilde{x}) + w(\tilde{x}, x_2)\} = \\
= \min\{\infty, 0 + 4\} = 4.
\]

\[
d_{\text{yeni}}(x_2) < d_{kəhnə}(x_2) \text{ şərti ödənilir, yəni } 4 < \infty.
\]

\(Q = \{x_2\} \) olundukdan \(x_2 \) təpəsini növbənin sonuna qoymaq lazım idi, lakin \(Q \) başlanıqda boş çoxluq idi, ona görə də növbənin sonu onun başlanğıcı ilə üst-üstə düşdü:

\[
d_{\text{yeni}}(x_4) = \min\{d_{kəhnə}(x_4), d(\tilde{x}) + w(\tilde{x}, x_4)\} = \\
= \min\{\infty, 0 + 6\} = 6.
\]

\(6 < \infty \) şərti ödənilir və \(Q = \{x_2, x_4\} \).

Addım 3.

\(Q \) – çoxluğulu boş deyildir. Ona görə də \(Q \neq \emptyset \). Addım 2-nin başlanğıcına keçəməli.

2-cə iterasiya.

Addım 2.

\(\tilde{x} = x_2, \ \tilde{S} = \{\tilde{x}\} = Q - \{x_2\} = \{x_4\}, \ \tilde{S} = \{x_3, x_4, x_5\} \).

\[
d_{\text{yeni}}(x_3) = \min\{d_{kəhnə}(x_3), d(\tilde{x}) + w(\tilde{x}, x_3)\} = \\
= \min\{\infty, 4 + 7\} = 11.
\]

\[
d_{\text{yeni}}(x_3) < d_{kəhnə}(x_3) \Rightarrow 11 < \infty \text{ şərti ödənilir və } Q = \{x_4, x_3\}.
\]

\[
d_{\text{yeni}}(x_4) = \min\{d_{kəhnə}(x_4), d(\tilde{x}) + w(\tilde{x}, x_4)\} = \\
= \min\{6, 4 - 8\} = -4.
\]
$-4 < \infty$ şərti ödənilir və $Q = \{x_4, x_3\}$. x_4 təpəsini növbənin başlangıcına qoymaq lazım idi, lakin o artıq oradadır.

$$d_{\text{yeni}}(x_5) = \min \{d_{\text{köhnə}}(x_5), d(\tilde{x}) + w(\tilde{x}, x_5)\} = \min \{\infty, 4 + 6\} = 10.$$ $10 < \infty$ şərti ödənilir və $Q = \{x_4, x_3, x_5\}$.

Addim 3.

Q çoxluğunu boş deyildir. Addim 2-nin başlangıcına keçməli.

3-cü iterasiya.

Addim 2.

$$\tilde{x} = x_4, Q - \{\tilde{x}\} = Q - \{x_4\} = \{x_3, x_5\}, \tilde{S} = \{x_3, x_5\}.$$ $d_{\text{yeni}}(x_3) = \min \{d_{\text{köhnə}}(x_3), d(\tilde{x}) + w(x_3, x_4)\} = \min \{11, -4 + 8\} = 4.$

$$d_{\text{yeni}}(x_3) = 4 < 11 = d_{\text{köhnə}}(x_3)$$ şərti ödənilir və $Q = \{x_3, x_5\}$. x_3 təpəsini növbənin başlangıcına qoymaq lazım idi, lakin o artıq oradadır.

$$d_{\text{yeni}}(x_5) = \min \{d_{\text{köhnə}}(x_5), d(\tilde{x}) + w(x_4, x_5)\} = \min \{10, -4 + 9\} = 5.$$ $d_{\text{yeni}}(x_5) = 5 < 10 = d_{\text{köhnə}}(x_5)$ şərti ödənilir və $Q = \{x_5, x_3\}$. x_5 təpəsini növbənin əvvəlinə köçərək.

Addim 3. $Q \neq \emptyset$. Addim 2-nin 4-cü iterasiyasına keçməli.
4-cü iterasiya.

Addım 2.

\[\tilde{x} = x_5, \quad Q - \{\tilde{x}\} = \{x_5, x_3\} - \{x_5\} = \{x_3\}, \quad \tilde{S} = \{x_6\}. \]

\[d_{yeni}(x_6) = \min\{d_{kõhno}(x_6), d(\tilde{x}) + w(x_5, x_6)\} = \min\{\infty, 5 + 3\} = 8. \]

\[d_{yeni}(x_6) = 8 < \infty = d_{kõhno}(x_5) \text{ şərti ödənilir və} \]

\[Q = \{x_3, x_6\}. \]

Addım 3. \(Q \neq \emptyset \). Addım 2-nin 5-ci iterasiyasına keçməli.

5-ci iterasiya.

Addım 2.

\[\tilde{x} = x_3, \quad Q - \{\tilde{x}\} = \{x_3, x_6\} - \{x_3\} = \{x_6\}, \quad \tilde{S} = \{x_5, x_6\}. \]

\[d_{yeni}(x_5) = \min\{d_{kõhno}(x_5), d(\tilde{x}) + w(x_3, x_5)\} = \min\{5, 4 - 7\} = -3. \]

\[d_{yeni}(x_5) = -3 < 5 = d_{kõhno}(x_5) \text{ şərti ödənilir və} \]

\[Q = \{x_5, x_6\}. \]

\[d_{yeni}(x_6) = \min\{d_{kõhno}(x_6), d(\tilde{x}) + w(x_3, x_6)\} = \min\{8, 4 + 5\} = 8. \]

\[d_{yeni}(x_6) = 8 < 8 = d_{kõhno}(x_5) \text{ şərti ödənilmir.} \]

Addım 3. \(Q \neq \emptyset \). Addım 2-nin 6-ci iterasiyasına keçməli.

6-cı iterasiya.

Addım 2.

\[\tilde{x} = x_5, \quad Q - \{\tilde{x}\} = \{x_5, x_6\} - \{x_5\} = \{x_6\}, \quad \tilde{S} = \{x_6\}. \]
\[d_{\text{yen}}(x_6) = \min \{ d_{\text{kölənə}}(x_6), d(x_5) + w(x_5, x_6) \} = \]
\[= \min \{8, -3 + 3\} = 0. \]
\[d_{\text{yen}}(x_6) = 0 < 8 = d_{\text{kölənə}}(x_6) \text{ şərti ödənilir. } Q = \{x_6\}. \]
\(Q \) çoxluğu yalnız \(x_6 \) təpəsindən ibarətdir və o növbənin başlanğıcında durur.

Addım 3. \(Q \neq \emptyset \). Addım 2-nin 7-ci iterasiyasına keçməli.

7-ci iterasiya.

Addım 2. \(\tilde{x} = x_6, \ Q - \{\tilde{x}\} = Q - Q = \emptyset. \tilde{S} = \{\emptyset\}. \)

Addım 3. \(Q = \emptyset. \) Mərhələ 1-in sonu. \(x_1 \) təpəsindən qrafin yerdə qalan təpələrinədək en qısa məşafələr tapılıdı. Bu məşafələr bunlardır: \(d(x_2) = 4, \quad d(x_3) = 4, \quad d(x_4) = -4, \quad d(x_5) = -3, \quad d(x_6) = 0. \)

Mərhələ 2.

Addım 4. \(\tilde{x} = x_6 \) olsun. \(\tilde{S} \) çoxluğu ise \(x_6 \) təpəsindən bir til ən qısa yolun təpələr çoxluğu olsun. \(\tilde{S} = \{x_3, x_5\}. \)

1-ci iterasiya.

\[d(\tilde{x}) = d(x_6) = 0 = 4 + 5 = d(x_3) + w(x_3, x_6) \]
ve ya
\[d(\tilde{x}) = d(x_6) = 0 = -3 + 3 = d(x_5) + w(x_5, x_6). \]
\((x_5, x_6) \) tilini en qısa yolun tili göturmək olar.

Addım 4-ə qayıdaq.

2-ci iterasiya.

Addım 4. \(\tilde{x} = x_5 \neq x_1, \tilde{S} = \{x_2, x_3, x_4\}. \)
\[d(\tilde{x}) = d(x_5) = -3 = 4 - 7 = d(x_3) + w(x_3, x_5), \]
\[d(\tilde{x}) = d(x_5) = -3 \neq 4 + 6 = d(x_2) + w(x_2, x_5), \]
\[d(\tilde{x}) = d(x_5) = -3 \neq 4 + 9 = d(x_4) + w(x_4, x_5). \]

\((x_3, x_5)\) tilini ən qısa yolun tili göturmək olar. \(\tilde{x} = x_3\). Addım 4-ə qayıdırəq.

3-cü iterasiya.

Addım 4. \(\tilde{x} = x_3 \neq x_1\). \(x_3\) tərəsindən bir til əvvəl gələn tərələr çoxluğu \(\tilde{S} = \{x_2, x_4\}\).

\[d(\tilde{x}) = d(x_3) = 4 \neq 4 + 7 = d(x_2) + w(x_2, x_3) \]
\[d(\tilde{x}) = d(x_3) = 4 = -4 + 8 = d(x_4) + w(x_3, x_4) \]

\((x_3, x_4)\) tilini ən qısa yola daxil edirik. \(\tilde{x} = x_4\). Addım 4-ün 4-cü iterasiyasına keçməli.

4-cü iterasiya.

Addım 4. \(\tilde{x} = x_4 \neq x_1\). \(\tilde{S} = \{x_1, x_2\}\).

\[d(\tilde{x}) = d(x_4) = -4 \neq 0 + 6 = d(x_1) + w(x_1, x_4) \]
\[d(\tilde{x}) = d(x_4) = -4 = 4 - 8 = d(x_2) + w(x_2, x_4) \]

\((x_2, x_4)\) tilini ən qısa yola daxil edirik. \(\tilde{x} = x_2\). Addım 4-ün 5-ci iterasiyasına keçməli.

5-cü iterasiya.

Addım 4. \(\tilde{x} = x_2 \neq x_1\), \(\tilde{S} = \{x_1\}\), yəni \(x_1\) tərəsi \(x_2\) tərəsindən bir til əvvəl gəlir.

\[d(\tilde{x}) = d(x_2) = 4 = 0 + 4 = d(x_1) + w(x_1, x_2) \]

\((x_1, x_2)\) tilini qurulan ən qısa yolun tili qəbul etmək olar. \(\tilde{x} = x_1\). Addım 4-ün 6-cı iterasiyasına keçməli.
6-çı iterasiya.

Addım 4. $\tilde{x} = x_1$. Mərhələ 2-nin sonu.
Beləliklə, x_1 təpəsindən x_6 təpəsindən ən qısa yol belədir:

$$\mu_{\min}[x_1, x_6] = (x_1, x_2, x_4, x_3, x_5, x_6),$$
yəni

Bu yolun uzunluğunun yükü (çəkisi):

$$4 + (-8) + 8 + (-7) + 3 = 0.$$

Çalışmalar 7

7.1. Çəki matrisi ilə verilmiş G qrafında üç tilden ibarət təpələr arasındakı ən qısa və ən uzun yolları Şimbell üsulu ilə tapın.

1) \[
\begin{bmatrix}
0 & 1 & 3 & 2 \\
3 & 0 & 1 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 4 & 0
\end{bmatrix}
\]

2) \[
\begin{bmatrix}
0 & 4 & 2 & 3 & 0 \\
3 & 0 & 1 & 0 & 1 \\
2 & 5 & 0 & 3 & 2 \\
0 & 4 & 1 & 0 & 0 \\
3 & 2 & 0 & 1 & 0
\end{bmatrix}
\]

93
$$
3) \begin{bmatrix}
0 & 2 & 3 & 4 & 4 \\
3 & 0 & 1 & 2 & 3 \\
3 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 \\
1 & 2 & 4 & 3 & 0 \\
\end{bmatrix}
$$

$$
4) \begin{bmatrix}
0 & 6 & 3 & 2 \\
3 & 0 & 1 & 0 \\
4 & 0 & 0 & 3 \\
0 & 0 & 4 & 0 \\
\end{bmatrix}
$$

$$
5) \begin{bmatrix}
0 & 4 & 2 & 3 & 1 \\
2 & 0 & 2 & 1 & 0 \\
2 & 5 & 0 & 3 & 2 \\
0 & 4 & 1 & 0 & 0 \\
3 & 2 & 0 & 1 & 0 \\
\end{bmatrix}
$$

$$
6) \begin{bmatrix}
0 & 1 & 1 & 1 & 0 \\
2 & 0 & 3 & 3 & 0 \\
3 & 0 & 0 & 2 & 1 \\
2 & 2 & 3 & 0 & 2 \\
2 & 0 & 3 & 2 & 0 \\
\end{bmatrix}
$$

$$
7) \begin{bmatrix}
0 & 2 & 3 & 1 & 0 \\
4 & 0 & 2 & 2 & 1 \\
0 & 1 & 0 & 3 & 0 \\
3 & 0 & 2 & 0 & 2 \\
2 & 3 & 0 & 1 & 0 \\
\end{bmatrix}
$$

$$
8) \begin{bmatrix}
0 & 3 & 5 & 2 \\
6 & 0 & 7 & 1 \\
4 & 0 & 0 & 3 \\
3 & 2 & 1 & 0 \\
\end{bmatrix}
$$

$$
9) \begin{bmatrix}
0 & 3 & 3 & 2 & 1 \\
3 & 0 & 4 & 2 & 2 \\
2 & 3 & 0 & 1 & 1 \\
3 & 4 & 0 & 0 & 3 \\
5 & 3 & 2 & 1 & 0 \\
\end{bmatrix}
$$

$$
10) \begin{bmatrix}
0 & 3 & 2 & 5 & 4 \\
6 & 0 & 7 & 0 & 5 \\
4 & 0 & 0 & 2 & 1 \\
1 & 3 & 2 & 0 & 2 \\
3 & 1 & 2 & 4 & 0 \\
\end{bmatrix}
$$
| 11) | \[
\begin{bmatrix}
0 & 5 & 4 & 6 \\
3 & 0 & 2 & 1 \\
4 & 6 & 0 & 3 \\
1 & 2 & 1 & 0 \\
\end{bmatrix}
\] | 12) | \[
\begin{bmatrix}
0 & 7 & 3 & 2 & 1 \\
2 & 0 & 3 & 2 & 2 \\
3 & 0 & 0 & 1 & 1 \\
4 & 2 & 1 & 0 & 6 \\
0 & 3 & 5 & 4 & 0 \\
\end{bmatrix}
\] |
| --- | --- | --- | --- |
| 13) | \[
\begin{bmatrix}
0 & 2 & 1 & 4 & 3 \\
2 & 0 & 3 & 2 & 1 \\
3 & 2 & 0 & 1 & 3 \\
4 & 0 & 2 & 0 & 5 \\
5 & 1 & 3 & 0 & 0 \\
\end{bmatrix}
\] | 14) | \[
\begin{bmatrix}
0 & 3 & 4 & 6 \\
7 & 0 & 6 & 2 \\
5 & 0 & 0 & 3 \\
3 & 4 & 2 & 0 \\
\end{bmatrix}
\] |
| 15) | \[
\begin{bmatrix}
0 & 2 & 3 & 1 & 1 \\
2 & 0 & 2 & 3 & 2 \\
3 & 1 & 0 & 2 & 4 \\
4 & 2 & 1 & 0 & 3 \\
2 & 0 & 3 & 2 & 0 \\
\end{bmatrix}
\] | 16) | \[
\begin{bmatrix}
0 & 1 & 5 & 7 \\
2 & 0 & 4 & 3 \\
3 & 1 & 0 & 2 \\
4 & 3 & 2 & 0 \\
\end{bmatrix}
\] |
| 17) | \[
\begin{bmatrix}
0 & 1 & 4 & 6 \\
7 & 0 & 2 & 3 \\
3 & 0 & 0 & 1 \\
1 & 2 & 0 & 0 \\
\end{bmatrix}
\] | 18) | \[
\begin{bmatrix}
0 & 3 & 2 & 1 \\
4 & 0 & 1 & 2 \\
3 & 6 & 0 & 1 \\
2 & 3 & 3 & 0 \\
\end{bmatrix}
\] |
7.2. Çeki matrisi ile verilmiş istiqametlənmiş G grafında x_1 təpəsindən x_6 təpəsinə olan en qısa yolu və onun
yükünü Deykstra alqoritmi ilə tapın.

1)

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>-3</td>
<td>6</td>
<td>7</td>
<td>∞</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td>∞</td>
<td>-4</td>
<td>5</td>
<td>13</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td>∞</td>
<td>∞</td>
<td>-2</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>x_4</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>-6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>x_5</td>
<td>∞</td>
<td>6</td>
<td>∞</td>
<td>∞</td>
<td>-8</td>
<td></td>
</tr>
<tr>
<td>x_6</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>$-$</td>
</tr>
</tbody>
</table>

2)

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>-2</td>
<td>3</td>
<td>5</td>
<td>∞</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td>∞</td>
<td>-2</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td>∞</td>
<td>∞</td>
<td>-5</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>x_4</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>-2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>x_5</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>-4</td>
<td></td>
</tr>
<tr>
<td>x_6</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>$-$</td>
</tr>
</tbody>
</table>

3)

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>-2</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td>∞</td>
<td>-2</td>
<td>3</td>
<td>1</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td>∞</td>
<td>∞</td>
<td>-3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>x_4</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>-1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>x_5</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>-4</td>
<td></td>
</tr>
<tr>
<td>x_6</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>$-$</td>
</tr>
</tbody>
</table>
4)
\[
\begin{bmatrix}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
 x_1 & -5 & 6 & 3 & 2 & \infty \\
 x_2 & \infty & -2 & 3 & \infty & \infty \\
 x_3 & \infty & \infty & -2 & 1 & \infty \\
 x_4 & \infty & \infty & \infty & -3 & 2 \\
 x_5 & \infty & \infty & \infty & \infty & -4 \\
 x_6 & \infty & \infty & \infty & \infty & \infty \\
\end{bmatrix}
\]

5)
\[
\begin{bmatrix}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
 x_1 & -2 & 3 & 6 & \infty & \infty \\
 x_2 & \infty & -3 & 2 & 1 & \infty \\
 x_3 & \infty & \infty & -4 & 2 & 1 \\
 x_4 & \infty & \infty & \infty & -2 & 3 \\
 x_5 & \infty & \infty & \infty & \infty & -3 \\
 x_6 & \infty & \infty & \infty & \infty & \infty \\
\end{bmatrix}
\]

6)
\[
\begin{bmatrix}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
 x_1 & -2 & 3 & 6 & \infty & \infty \\
 x_2 & \infty & -3 & 2 & 5 & \infty \\
 x_3 & \infty & \infty & -4 & 2 & 9 \\
 x_4 & \infty & \infty & \infty & -2 & 3 \\
 x_5 & \infty & \infty & \infty & \infty & -9 \\
 x_6 & \infty & \infty & \infty & \infty & \infty \\
\end{bmatrix}
\]
7) \[\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ x_1 & -6 & 3 & 2 & \infty & \infty \\ x_2 & \infty & -4 & 4 & \infty & \infty \\ x_3 & \infty & \infty & -3 & 2 & 1 \\ x_4 & \infty & \infty & \infty & -3 & 2 \\ x_5 & \infty & \infty & \infty & \infty & -3 \\ x_6 & \infty & \infty & \infty & \infty & \infty \end{bmatrix} \]

8) \[\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ x_1 & -5 & 4 & 4 & 4 & \infty \\ x_2 & \infty & -2 & 2 & 3 & \infty \\ x_3 & \infty & \infty & -1 & 4 & 3 \\ x_4 & \infty & \infty & \infty & -1 & 3 \\ x_5 & \infty & \infty & \infty & \infty & -2 \\ x_6 & \infty & \infty & \infty & \infty & \infty \end{bmatrix} \]

9) \[\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ x_1 & -6 & 9 & 4 & 7 & \infty \\ x_2 & \infty & -5 & 3 & 4 & \infty \\ x_3 & \infty & \infty & -2 & 1 & \infty \\ x_4 & \infty & \infty & \infty & -6 & 3 \\ x_5 & \infty & \infty & \infty & \infty & -8 \\ x_6 & \infty & \infty & \infty & \infty & \infty \end{bmatrix} \]
10) \[\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ x_1 & -2 & 4 & 5 & 3 & \infty \\ x_2 & \infty & -3 & 2 & 1 & \infty \\ x_3 & \infty & \infty & -3 & 4 & 1 \\ x_4 & \infty & \infty & \infty & -2 & 2 \\ x_5 & \infty & \infty & \infty & \infty & -5 \\ x_6 & \infty & \infty & \infty & \infty & \infty \end{bmatrix} \]

7.3. Çəki matrisi ilə verilmiş istiqamətlənmilmiş G grafinən x_1 əpəsindən x_6 əpəsinə dpək ən qısa yolun və onun yückünü Bellman-Mur alqoritmi ilə tapın.

1) \[\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ x_1 & -3 & \infty & 2 & \infty & \infty \\ x_2 & \infty & -7 & -6 & 8 & \infty \\ x_3 & \infty & \infty & -\infty & -2 & 5 \\ x_4 & \infty & \infty & \infty & -\infty & \infty \\ x_5 & \infty & \infty & \infty & \infty & -4 \\ x_6 & \infty & \infty & \infty & \infty & \infty \end{bmatrix} \]

2) \[\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ x_1 & -2 & 3 & \infty & \infty & \infty \\ x_2 & \infty & -4 & -3 & 2 & \infty \\ x_3 & \infty & \infty & 4 & 3 & 5 \\ x_4 & \infty & \infty & \infty & -2 & 1 \\ x_5 & \infty & \infty & \infty & \infty & -3 \\ x_6 & \infty & \infty & \infty & \infty & \infty \end{bmatrix} \]
\[
\begin{array}{ccccccc}
3) & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
 & -4 & 3 & 2 & \infty & \infty & \\
 & \infty & -3 & -3 & 6 & \infty & \\
 & \infty & \infty & -1 & 2 & \infty & \\
 & \infty & \infty & \infty & -\infty & 4 & \\
 & \infty & \infty & \infty & \infty & -5 & \\
 & \infty & \infty & \infty & \infty & \infty & - \\
\end{array}
\]

\[
\begin{array}{ccccccc}
4) & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
 & -5 & 2 & 1 & \infty & \infty & \\
 & \infty & -1 & 3 & -2 & \infty & \\
 & \infty & \infty & -3 & 5 & \infty & \\
 & \infty & \infty & \infty & -3 & 6 & \\
 & \infty & \infty & \infty & \infty & -1 & \\
 & \infty & \infty & \infty & \infty & \infty & - \\
\end{array}
\]

\[
\begin{array}{ccccccc}
5) & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
 & -6 & 2 & 3 & \infty & \infty & \\
 & \infty & -4 & -7 & 6 & \infty & \\
 & \infty & \infty & -5 & -4 & \infty & \\
 & \infty & \infty & \infty & -4 & -2 & \\
 & \infty & \infty & \infty & \infty & -5 & \\
 & \infty & \infty & \infty & \infty & \infty & - \\
\end{array}
\]
6) \[
\begin{bmatrix}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
 x_1 & - & 8 & 3 & \infty & \infty & \infty \\
 x_2 & \infty & - & 4 & 3 & \infty & \infty \\
 x_3 & \infty & \infty & - & 2 & 1 & \infty \\
 x_4 & \infty & \infty & \infty & - & 5 & \infty \\
 x_5 & \infty & \infty & \infty & \infty & - & 4 \\
 x_6 & \infty & \infty & \infty & \infty & \infty & - \\
\end{bmatrix}
\]

7) \[
\begin{bmatrix}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
 x_1 & - & \infty & 3 & -5 & \infty & \infty \\
 x_2 & \infty & - & 2 & -8 & 6 & \infty \\
 x_3 & \infty & \infty & - & 8 & 4 & \infty \\
 x_4 & \infty & \infty & \infty & - & 3 & 2 \\
 x_5 & \infty & \infty & \infty & \infty & - & 1 \\
 x_6 & \infty & \infty & \infty & \infty & \infty & - \\
\end{bmatrix}
\]

8) \[
\begin{bmatrix}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
 x_1 & - & 7 & 6 & 3 & \infty & \infty \\
 x_2 & \infty & - & 2 & 4 & -3 & \infty \\
 x_3 & \infty & \infty & - & 5 & 5 & \infty \\
 x_4 & \infty & \infty & \infty & - & 3 & 5 \\
 x_5 & \infty & \infty & \infty & \infty & - & 4 \\
 x_6 & \infty & \infty & \infty & \infty & \infty & - \\
\end{bmatrix}
\]
\[
\begin{align*}
\text{9) } & \quad \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ x_1 & -5 & 6 & 7 & \infty & \infty \\ x_2 & \infty & -3 & -7 & 6 & \infty \\ x_3 & \infty & \infty & - & 8 & 9 & 5 \\ x_4 & \infty & \infty & \infty & - & 6 & 5 \\ x_5 & \infty & \infty & \infty & \infty & - & 3 \\ x_6 & \infty & \infty & \infty & \infty & \infty & - \end{bmatrix} \\
\text{10) } & \quad \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ x_1 & -5 & 4 & -3 & \infty & \infty \\ x_2 & \infty & -6 & -7 & 3 & \infty \\ x_3 & \infty & \infty & - & 10 & 2 & \infty \\ x_4 & \infty & \infty & \infty & - & 3 & 2 \\ x_5 & \infty & \infty & \infty & \infty & - & 4 \\ x_6 & \infty & \infty & \infty & \infty & \infty & - \end{bmatrix}
\end{align*}
\]
8. İstiqamətlənmiş qrafın təpələrinin və
tillərinin Falkerson alqoritmi ilə
nizamlanması

Qraflar nəzəriyyəsinin bir çox tətbiq sahələrində
hesablamlar apararkən qrafın təpələrinin və tillərinin
nizamlı olması işi asanlaşdırır. Ona görə də istiqamət-
lanmiş qraflarda təsiklər (konturlar) yokdursa, onda onun
təpələrini və tillərini nizamlamaq mühüm əhəmiyyət
kəsb edir. Təpələr çoxluğunu elə altçoxluqlara (səviyyə-
yələrə) ayırmaq olar ki, onlar üçün aşağıdakı şərtlər
ödənilir:

1. Birinci səviyyəyə (altçoxluğa) daxil olan təpələrə
hec bir til daxil olmasın və sonuncu səviyyəyən (altçox-
luqdan) tillə çıxmasın.

2. Aralıq səviyyələrdə (altçoxluqlarda) həm daxil
olan və həm də onlardan çıxan tillə olsun.

3. Eyni səviyyədə (altçoxluqda) olan təpələr bir-biri
ila tillərlə əlaqləli deyildirlər.

Təpələrin belə quplara (səviyyələrə) bölgüsündən
alınan qraf əvvəlki qrafə izomorfdur.

Qrafın təpələrinin və tillərinin nizamlanması

Falkerson alqoritmi ilə belə aralıla bilər.

Addım 1. Qrafda həc bir tilin daxil olmadiğı təpə-
ləri tapmalı və onlari 1-ci qrup elan etməkə nömrə-
ləmlədi.

Addım 2. Nömrələnmiş təpələrdən çıxan tilləri
qrafdan silməli. Yerde qalan (nömrələnmiş) təpələr-
dən həc olmazsa biri var ki, ona həc bir til daxil olmasın.
Belə təpələr çoxluğunu növbəti qrup elan etməli.

104
Addım 2-ni bütün təpələr nizamlanana qədər davam etdirməli.

Analoji qayda ilə qrafın təkillərinini nizamlamaq olar.

Misal 8.1. Verilən qrafın təpələr çoxluğunu nizamlayın.

Beləliklə, verilən G qrafının təpələrinin nizamlanması nəticəsinə G_1 qrafını aldıq.

Göründüyü kimi B təpəsi 1-ci, D təpəsi 2-ci, E təpəsi 3-cü, A təpəsi 4-cü və C təpəsi 5-ci gruba aiddir. Qruplarda təpələrin sayı çox ola bilər.

İndi isə qrafın təpələrinin nizamlanmasını matris
Bunun üçün verilən qrafın təpələrinin qonşuluq P matrisindən istifadə edək. Əgər P matrisində hər hansı sütun elementləri yalnız 0-lardan ibarətdirə, onda bu o deməkdir ki, həmin sütunun adı olan x_i təpəsinə heç bir til daxil olmur. Bu təpəni 1-ci qrup təpələr çoxluğuşa daxil edirik və x_i təpəsi şərti qonşuluq P matrisindən silinir. Alınan matrisdə heç olmazsa bir sütun elementləri yalnız sıfırlar olar. Bu sütunun adı olan x_j təpəsini 2-ci qrupa daxil edirik və matrisdən onun sıtirini silirik və s. Bu prosesi təpələrin yarımdərəcələrini $d^-(x_i)$ (x_i təpəsini daxil olan tillərin sayıdır) vəsilə də aparmaq olar, yəni x_i təpəsinə heç bir til daxil olmursa, $d^-(x_i) = 0$ olar.

Yuxarıdağı misalda verilən qrafın təpələrini matris üsulu ilə nizamlayaq.

$$P = \begin{bmatrix}
A & B & C & D & E \\
A & 0 & 0 & 1 & 0 & 0 \\
B & 1 & 0 & 1 & 1 & 1 \\
C & 0 & 0 & 0 & 0 & 0 \\
D & 0 & 0 & 1 & 0 & 1 \\
E & 1 & 0 & 1 & 0 & 0 \\
\end{bmatrix}$$

Təpələrin yarımdərəcələrinini hesablayaq:

- $d^-(A)=2$, $d^-(B)=0$, $d^-(C)=4$, $d^-(D)=1$, $d^-(E)=2$.
- $d^+(A)=1$, $d^+(B)=4$, $d^+(C)=0$, $d^+(D)=2$, $d^+(E)=2$.

B təpəsinə daxil olan til vəyədə, demələ, $d^-(B)=0$
və B tərəsini 1-cü qrupa daxil edirik və onun sətirini P matrisindən silirik. Nəticədə P_1 matrisi alınır:

$$P_1 = \begin{bmatrix}
A & C & D & E \\
A & 0 & 1 & 0 & 0 \\
C & 0 & 0 & 0 & 0 \\
D & 0 & 1 & 0 & 1 \\
E & 1 & 1 & 0 & 0
\end{bmatrix}$$

$d^-(A)=1$, $d^-(C)=3$, $d^-(D)=0$, $d^-(E)=1$

olduğundan D tərəsini 2-cü qrupa daxil edirik və P_1 matrisindən onun sətirini sildikdə P_2 matrisi alınır:

$$P_2 = \begin{bmatrix}
A & C & E \\
A & 0 & 1 & 0 \\
C & 0 & 0 & 0 \\
E & 1 & 1 & 0
\end{bmatrix}$$

$d^-(A)=1$, $d^-(C)=2$, $d^-(E)=0$

olduğundan E tərəsini 3-cü qrupa daxil edirik və P_2 matrisindən onun sətirini sildikdə P_3 matrisi alınır:

$$P_3 = \begin{bmatrix}
A & C \\
A & 0 & 1 \\
C & 0 & 0
\end{bmatrix}$$

$d^-(A)=0$, $d^-(C)=1$ olduğundan A tərəsi 4-cü qrupa daxil edilir və P_3 matrisindən onun sətirini silinir. Nəhayət, qalan C tərəsi 5-ci qrupa daxil edilir.

107
8.1. Maksimal yolun tapılması alqoritmi

G qrafınında maksimal (ən uzun) yolun olması üçün bu qrafda tşikl olmamalıdır, eks halda, müəyyən yolların uzunluğu yuxaridan məhdud olmaya bilər. Əğer G qrafınında tşikl yoxdursa, onda onun ixtiyarı iki $x_i \neq x_j$ təpələrini üçün aşağıdakı üç şərtdən biri ödənilir:

1. $x_i \in F^{-1}x_j$, yəni x_i təpəsi x_j təpəsindən əvvəl gəlir;

2. $x_i \in Fx_j$, yəni x_i təpəsi x_j təpəsindən sonra gəlir;

3. x_i və x_j təpələrinin əlaqələndirən yol yoxdur, burada F və onun tərsi F^{-1} təpələrin birinin-digerine və əksinə, inikasıdır.

Tsikli olmayan $G=(X,F)=(X,F^{-1})$ qrafınında maksimal (ən uzun) yolun tapması üçün əvvəlcə bu qrafın təpələrini Falkerson alqoritmi ilə nizamlamaq lazımdır.

Tutaq ki, d_j—ən uzun yolun (x_1 təpəsindən x_j təpəsine qədər) uzunluğu dərə. Onda d_j aşağıdakı rekkurənt münasibəti ödəməlidir:

$$
\begin{align*}
 d_1 &= 0, \\
 d_2 &= \max\{d_1 + w(x_1, x_2)\}, \\
 d_j &= \max\{d_{j-2} + w(x_{j-2}, x_{j-1}), d_{j-1} + w(x_{j-1}, x_j)\}, \\
 d_j &= \infty, \quad j = k + 2, k + 3, \ldots, n
\end{align*}
$$

Bu münasibətin köməyilə x_1 təpəsindən lazım

108
gelən təpəyə qədər maksimal olan yolu hesablamaq olar. Yolun özünün qurulması ise Deykstra algoritminde Mərhələ 2 ilə aparıla bilər.

Misal 8.2. Çəki matrisi W ilə verilən qrafda x_1 təpəsindən x_6 təpəsinə qədər olan en uzun yolu hesablayın və bu yolu qurun:

$$
W = \begin{bmatrix}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
 x_1 & - & 8 & 10 & \infty & \infty & \infty \\
 x_2 & \infty & - & 10 & 12 & \infty & \infty \\
 x_3 & \infty & \infty & - & 10 & 12 & 7 \\
 x_4 & \infty & \infty & \infty & - & 9 & 13 \\
 x_5 & \infty & \infty & \infty & \infty & - & 11 \\
 x_6 & \infty & \infty & \infty & \infty & \infty & - \\
\end{bmatrix}
$$

Həlli. G qrafının təpələrini Falkerson algoritmi ilə nizamlasaq belə bir qraf alınır:
x_1 təpəsi 1-ci qrup, x_2 təpəsi 2-ci qrup, x_3 təpəsi 3-cü qrup, x_4 təpəsi 4-cü qrup, x_5 təpəsi 5-ci qrup, x_6 təpəsi 6-ci qrupdur.

Mərhələ 1.
Maksimal yolu rekurrent

$$
\begin{align*}
 d_1 &= 0, \\
 d_2 &= \max \{d_1 + w(x_1, x_2)\}, \\
 d_j &= \max \{d_{j-2} + w(x_{j-2}, x_{j-1}), d_{j-1} + w(x_{j-1}, x_j)\}, \\
 j &= 3, 4, \ldots, k + 1, \\
 d_j &= \infty, \quad j = k + 2, k + 3, \ldots, n
\end{align*}
$$

münasibəti ilə təyin edək.

$d_1 = 0$.

$d_2 = \max \{d_1 + w(x_1, x_2)\} = \max \{0 + 8\} = 8.$

$d_3 = \max \{d_1 + w(x_1, x_2), d_2 + w(x_2, x_3)\} =
\quad = \max \{0 + 8, 8 + 10\} = 18.$

$d_4 = \max \{d_2 + w(x_2, x_3), d_3 + w(x_3, x_4)\} =
\quad = \max \{8 + 10, 18 + 10\} = 28.$

$d_5 = \max \{d_3 + w(x_3, x_4), d_4 + w(x_4, x_5)\} =
\quad = \max \{18 + 10, 28 + 9\} = 37.$

$d_6 = \max \{d_4 + w(x_4, x_5), d_5 + w(x_5, x_6)\} =
\quad = \max \{28 + 9, 37 + 11\} = 48.$

Beləliklə, x_1 təpəsindən x_6 təpəsinədək maksimal
yolun 48 vahid olduğunu tapdıq: $\mu_{\text{max}}[x_1, x_6] = 48$.
İndi isə bu yolun özünü quraq.

Mərhələ 2.
x_6 təpəsi üçün $d_6 = d_5 + 11 = 37 + 11 = 48$. Deməli, (x_5, x_6) ilini maksimal yola daxil edirik.
x_5 təpəsi üçün $d_5 = d_4 + 9 = 28 + 9 = 37$. Deməli, (x_4, x_5) ilini maksimal yola daxil edirik.
x_4 təpəsi üçün $d_4 = d_3 + 10 = 18 + 10 = 28$. Deməli, (x_3, x_4) ilini maksimal yola daxil edirik.
x_3 təpəsi üçün $d_3 = d_2 + 10 = 8 + 10 = 18$. Deməli, (x_2, x_3) ilini maksimal yola daxil edirik.
x_2 təpəsi üçün $d_2 = d_1 + 8 = 8$. Deməli, (x_1, x_2) ilini maksimal yola daxil edirik.
Nəticədə maksimal yolu qurmaşı oluruq.

$\mu_{\text{max}}[x_1, x_6] = (x_1, x_2, x_3, x_4, x_5, x_6) \Rightarrow$

Çalışmalar 8

Çəki matrisi ilə verilən G qrafının təpələrini Falkerson alqoritmi ilə nizamlayın və x_1 təpəsindən x_6 təpəsinədək maksimal yolun uzunluğunu və bu yolun

111
özünü təyin edin.

1) \[
\begin{array}{cccccc}
x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
\hline
x_1 & - & 11 & \infty & 14 & 15 & \infty \\
x_2 & \infty & - & 13 & \infty & \infty & \infty \\
x_3 & \infty & \infty & - & \infty & \infty & 13 \\
x_4 & \infty & 7 & 11 & - & 9 & \infty \\
x_5 & \infty & 11 & 10 & \infty & - & 14 \\
x_6 & \infty & \infty & \infty & \infty & \infty & -
\end{array}
\]

2) \[
\begin{array}{cccccc}
x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
\hline
x_1 & - & 6 & 8 & 11 & 10 & \infty \\
x_2 & \infty & - & \infty & 9 & 7 & 15 \\
x_3 & \infty & 8 & - & 7 & 4 & 11 \\
x_4 & \infty & \infty & \infty & - & 6 & 7 \\
x_5 & \infty & \infty & \infty & \infty & - & 9 \\
x_6 & \infty & \infty & \infty & \infty & \infty & -
\end{array}
\]

3) \[
\begin{array}{cccccc}
x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
\hline
x_1 & - & 5 & 6 & 9 & \infty & \infty \\
x_2 & \infty & - & \infty & 3 & \infty & 14 \\
x_3 & \infty & 3 & - & 3 & 4 & 16 \\
x_4 & \infty & \infty & \infty & - & \infty & 4 \\
x_5 & \infty & \infty & \infty & 3 & - & 8 \\
x_6 & \infty & \infty & \infty & \infty & \infty & -
\end{array}
\]
4) \[
\begin{bmatrix}
x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
-6 & 15 & \infty & 14 & \infty & \infty \\
\infty & -7 & 10 & \infty & \infty & \infty \\
\infty & \infty & -19 & \infty & 21 & \\
\infty & \infty & \infty & - & \infty & 17 \\
\infty & 13 & 14 & 15 & - & 18 \\
\infty & \infty & \infty & \infty & \infty & -
\end{bmatrix}
\]

5) \[
\begin{bmatrix}
x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
-10 & 12 & \infty & \infty & \infty & \infty \\
\infty & -11 & 9 & \infty & 19 & \\
\infty & \infty & - & \infty & 10 & \infty \\
\infty & \infty & 13 & - & 11 & 10 \\
\infty & \infty & \infty & \infty & - & 6 \\
\infty & \infty & \infty & \infty & \infty & -
\end{bmatrix}
\]

6) \[
\begin{bmatrix}
x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
-7 & 2 & \infty & 13 & \infty & \\
\infty & - & \infty & \infty & 6 & \infty \\
\infty & 2 & -1 & 3 & 11 & \\
\infty & \infty & \infty & - & \infty & 5 \\
\infty & \infty & \infty & 3 & - & 5 \\
\infty & \infty & \infty & \infty & \infty & -
\end{bmatrix}
\]
7) Matrix

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>-10</td>
<td>11</td>
<td>6</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>x_2</td>
<td>∞</td>
<td>-13</td>
<td>8</td>
<td>11</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td>∞</td>
<td>∞</td>
<td>-5</td>
<td>6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>x_4</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>-7</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>x_5</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>-9</td>
<td></td>
</tr>
<tr>
<td>x_6</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>$-$</td>
</tr>
</tbody>
</table>

8) Matrix

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>-4</td>
<td>8</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>x_2</td>
<td>∞</td>
<td>$-\infty$</td>
<td>3</td>
<td>∞</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td>∞</td>
<td>3</td>
<td>-4</td>
<td>3</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>x_4</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>$-\infty$</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>x_5</td>
<td>∞</td>
<td>2</td>
<td>∞</td>
<td>5</td>
<td>-7</td>
<td></td>
</tr>
<tr>
<td>x_6</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>$-$</td>
</tr>
</tbody>
</table>

9) Matrix

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>-5</td>
<td>4</td>
<td>∞</td>
<td>10</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td>∞</td>
<td>$-\infty$</td>
<td>8</td>
<td>∞</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td>∞</td>
<td>6</td>
<td>-5</td>
<td>8</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>x_4</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>$-\infty$</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>x_5</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>4</td>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>x_6</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>$-$</td>
</tr>
</tbody>
</table>
\[
\begin{array}{ccccccc}
10) & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
\begin{bmatrix}
\cd & \cd & 10 & \infty & 11 & \infty \\
\cd & \infty & \cd & 7 & \cd & \infty \\
\cd & 8 & \cd & 10 & \infty \\
\cd & \cd & \cd & \cd & \cd & 11 \\
\cd & \cd & 6 & \cd & 13 \\
\infty & \cd & \cd & \cd & \cd & \cd & \cd \\
\end{bmatrix}
\end{array}
\]

\[
\begin{array}{ccccccc}
11) & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
\begin{bmatrix}
\cd & \cd & 5 & 10 & \infty \\
\cd & \cd & \cd & \cd & \cd & \cd \\
\cd & \cd & \cd & \cd & \cd & 8 \\
\cd & 4 & 6 & \cd & 11 \\
\cd & 5 & 5 & \cd & 3 \\
\cd & \cd & \cd & \cd & \cd & \cd \\
\end{bmatrix}
\end{array}
\]

\[
\begin{array}{ccccccc}
12) & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
\begin{bmatrix}
\cd & \cd & 3 & \cd & \cd & \cd \\
\cd & \cd & 4 & 6 & 8 \\
\cd & \cd & \cd & \cd & 12 \\
\cd & \cd & \cd & \cd & \cd \\
\cd & 3 & \cd & \cd \\
\cd & \cd & \cd & \cd & \cd \\
\end{bmatrix}
\end{array}
\]
13) \[
\begin{bmatrix}
x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
-7 & 8 & 13 & \infty & \infty \\
\infty & -9 & 7 & 12 & \infty \\
\infty & \infty & -6 & 7 & 8 \\
\infty & \infty & \infty & -9 & 17 \\
\infty & \infty & \infty & \infty & -10 \\
\infty & \infty & \infty & \infty & \infty \\
\end{bmatrix}
\]

14) \[
\begin{bmatrix}
x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
-4 & 9 & 8 & \infty & \infty \\
\infty & -3 & \infty & \infty & 2 \\
\infty & \infty & -\infty & \infty & 3 \\
\infty & 2 & 4 & -6 & \infty \\
\infty & 3 & \infty & \infty & -4 \\
\infty & \infty & \infty & \infty & \infty \\
\end{bmatrix}
\]

15) \[
\begin{bmatrix}
x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
-5 & \infty & 7 & 6 & \infty \\
\infty & -7 & \infty & 5 & \infty \\
\infty & 8 & -3 & 2 & 1 \\
\infty & \infty & \infty & -\infty & 4 \\
\infty & \infty & \infty & \infty & -5 \\
\infty & \infty & \infty & \infty & \infty \\
\end{bmatrix}
\]
16) \[
\begin{array}{cccccc}
& x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
\hline
x_1 & -3 & \infty & 4 & \infty & \infty & \\
x_2 & \infty & -5 & 6 & \infty & \infty & \\
x_3 & \infty & \infty & -2 & 1 & \infty & \\
x_4 & \infty & \infty & \infty & -3 & 4 & \\
x_5 & \infty & \infty & \infty & \infty & -2 & \\
x_6 & \infty & \infty & \infty & \infty & \infty & -
\end{array}
\]

17) \[
\begin{array}{cccccc}
& x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
\hline
x_1 & -5 & 3 & \infty & 2 & \infty & \\
x_2 & \infty & -1 & \infty & 3 & \infty & \\
x_3 & \infty & \infty & -4 & 5 & \infty & \\
x_4 & \infty & \infty & \infty & -2 & 3 & \\
x_5 & \infty & \infty & \infty & \infty & -2 & \\
x_6 & \infty & \infty & \infty & \infty & \infty & -
\end{array}
\]

18) \[
\begin{array}{cccccc}
& x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
\hline
x_1 & -3 & \infty & 4 & \infty & \infty & \\
x_2 & \infty & -4 & 5 & 6 & \infty & \\
x_3 & \infty & \infty & -3 & 5 & 4 & \\
x_4 & \infty & \infty & \infty & -2 & \infty & \\
x_5 & \infty & \infty & \infty & \infty & -3 & \\
x_6 & \infty & \infty & \infty & \infty & \infty & -
\end{array}
\]
19) \[
\begin{bmatrix}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
 x_1 & -6 & \infty & 4 & \infty & \infty \\
 x_2 & \infty & -3 & 2 & \infty & \infty \\
 x_3 & \infty & \infty & -4 & 2 & \infty \\
 x_4 & \infty & \infty & \infty & -1 & 6 \\
 x_5 & \infty & \infty & \infty & \infty & -3 \\
 x_6 & \infty & \infty & \infty & \infty & - \\
\end{bmatrix}
\]

20) \[
\begin{bmatrix}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
 x_1 & -6 & \infty & \infty & 4 & \infty \\
 x_2 & \infty & -3 & 2 & \infty & \infty \\
 x_3 & \infty & \infty & -5 & 6 & \infty \\
 x_4 & \infty & \infty & \infty & -4 & 2 \\
 x_5 & \infty & \infty & \infty & \infty & -3 \\
 x_6 & \infty & \infty & \infty & \infty & - \\
\end{bmatrix}
\]
9. Ağac (şəərə) qraflar

1. Qraflar içərisində sade mühüm qraf növü ağac qrafıdır. Ağac qrafının eyniçələşı bir neçə tərəfindən verən olar. Məlumdur ki, əgər \(G=(X,U) \) qrafının bir-birindən fərqlə ixtiyari iki \(x_i \) və \(x_j \) tərəflərinin arasındakı zəncir (yol) varsa, onda belə qraf əlaqəli qrafıdır. Belə fərz edək ki, \(|X|=n, |U|=m\), yəni \(G \) qrafının \(n \) sayda təpəsi və \(m \) sayda tili var, \(G \) istiqamətələnməmiş təşkil olmayan qrafdır, onda \(G - \) ağac qrafıdır. Başqa sözlə,

1) əgər \(G - \) əlaqəlidirsə və tillərinin sayı \(m = n - 1 \) əqərdirəsə, onda \(G - \) ağac qrafıdır;

2) əgər \(G - \) əlaqəlidirsə, bu qrafda təşkil yoxdursa və tillərinin sayı \(m = n - 1 \) əqərdirəsə, onda \(G - \) ağac qrafıdır;

3) əgər \(G \) əlaqəli qrafdirsa, lakin onun istənilən bir təpəsini atdıqda əlaqəsziz qrafça çevrilirə, onda \(G - \) ağac qrafdır;

4) əgər \(G \) qrafında təşkil yoxdursa, lakin onun ixti-yari iki təpəsini birleşdirən bir tilə davam edikdə yalnız bir təşkil əmələ gəlirə, onda \(G - \) ağac qrafdır;

5) əgər \(G \) qrafının üst-üstə dəşməyən istənilən iki təpəsini yeganə bir sade zəncir birleşdirirə, onda \(G - \) ağac qrafdır.

Bu şərtlər eyniçələddir, yəni

\[1) \Rightarrow 2) \Rightarrow 3) \Rightarrow 4) \Rightarrow 5) \Rightarrow 1) . \]
Misal 9.1.

![Diagram](image1)

ağac graflardır.

Əgər G qrafının əlaqəliylik komponentlərindən hər biri ağac grafdırsa, onda G – **mesə** adlanır.

Misal 9.2.

![Diagram](image2)

altqrafları G qrafının əlaqəliylik komponentləridirsə, onda G – meşədir, çünki onlardan hər biri ağac grafdır.

2. Tutaq ki, $G=(X,U)=(X,F)$, burada F – təpələrin bir-birine inikasıdır, istiqamətlənmiş əlaqəli qrafıdır.
Tərif 9.1. Əgər istiqamətlənmiş əlaqəli G qrafında
1) yeganə elə bir x_0 təpəsi varsa ki, bu təpəyə heç bir til daxil olmur, yəni $F^{-1}x_0 = \emptyset$ (bu halda x_0 təpəsi kök adlanır),
2) hər bir $x_i \neq x_0$ təpəsinə yalnız və yalnız bir til daxil olursa, yəni $|F^{-1}x_0|=1$,
3) G qrafında kontur (qapalı yol) yoxdursa, onda G qrafi istiqamətlənmiş ağac qrafıdır.

Misal 9.3.

![Diagram](image)

Tərif 9.2. Əgər $G=(X,U)$ və $G_1=(X_1,U_1)$ qraf-]larında a) $X=X_1$, b) $U_1 \subset U$, c) G_1 qrafının istənilən əlaqəlilik komponenti ağac qrafdırsa, onda G_1 qrafi G qrafının **karkasi (skeleti)** adlanır

Misal 9.4.

![Diagram](image)

burada G_1 və G_2 qrafları G qrafının karkaslarıdır.
Analoji qaydada istiqamətlənmiş qrafın karkasları anlayışını vermək olar.

Teorem 9.1 (Keyli). n tərəvi olan əlaqəli qrafdan $t_n = n^{n-2}$ qəder ağac qraf düzəltmək olar.

Qeyd edək ki, $t_n = n^{n-2}$ sayda düzəldilən ağac qraflar arasında izomorf qraflar da ola bilər. Ona görə də n tərəvi olan hər hansı əlaqəli qrafdan izomorf olmayan nə qəder ağac qraf düzəltmək olar sualına Amerika riyaziyyatçısı Poyanın uyğun teoremlərindən cavab almaq olar.

Verilən qrafdan düzəldilə bilən karkas qrafların sayını tapmaq üsullarından biri Kirxhof matrisində baş diaqonal elementlərinin minorudur.

Tərif 9.3. Tutaq ki, $G = (X, U) = (X, F)$ qrafı verilir və $|X| = n$. Belə bir Kirxhof matrisi adlanan B matrisini təyin edək:

$$b_{ij} = \begin{cases}
-1, & \text{əgər } x_i \text{ və } x_j \text{ tərəvəri qonsudursa,} \\
0, & \text{əgər } x_i \text{ və } x_j , i \neq j , \text{ qonsu deyilsə,} \\
|Fx_i|, & \text{əgər } i = j - \text{dirə, burada } |Fx_i| \text{ ədədi } \\
x_i \text{ tərəvəsindən çıxan tillərin sayıdır.}
\end{cases}$$

Bu tərəfdən alınır ki, Kirxhof matrisində hər bir sətir (sütun) elementlərinin cəmi sıfıra bərabərdir. Bu isə
o deməkdər ki, Kirxhof matrisində bütün elementlərin cəbri tamamlayıcıları bir-birinə bərabərdərdir.

Misal 9.5. G qrafının Kirxhof matrisini qurun.

![Kirxhof matrisinin şəkli](image)

\[
B = \begin{bmatrix}
 x_1 & x_2 & x_3 & x_4 & x_5 \\
 x_1 & 2 & -1 & -1 & 0 & 0 \\
 x_2 & -1 & 2 & -1 & 0 & 0 \\
 x_3 & -1 & -1 & 4 & -1 & -1 \\
 x_4 & 0 & 0 & -1 & 2 & -1 \\
 x_5 & 0 & 0 & -1 & -1 & 2
\end{bmatrix}
\]

Teorem 9.2 (Kirxhof). Tərtibi \(n \geq 2 \) olan əlaqəli, iləyi olmayan \(G \) qrafında karkas qrafların sayı \(G \) qrafının Kirxhof matrisinin istənilən \(b_{ii} \) elementinin minoruna bərabərdərdir.

Misal 9.6. Verilən \(G \) qrafında mümkün olan karkasların sayını tapın və onları göstərin.

![Karkasların şəkli](image)

\[
B = \begin{bmatrix}
 x_1 & x_2 & x_3 & x_4 \\
 x_1 & 3 & -1 & -1 & -1 \\
 x_2 & -1 & 3 & -1 & -1 \\
 x_3 & -1 & -1 & 3 & -1 \\
 x_4 & -1 & -1 & -1 & 3
\end{bmatrix}
\]

Məsələn \(b_{11} \)-in minoru:

\[
\Delta_{x_1} = \begin{vmatrix}
 3 & -1 & -1 \\
 -1 & 3 & -1 \\
 -1 & -1 & 3
\end{vmatrix} = 27 - 1 - 13 - 3 - 3 - 3 = 16.
\]

123
Deməli, verilən qrafdan 16 karkas qraf düzəltmək olar. Onlardan bir neçəsini göstərək.

Bu misaldan gərən dəyişiklərə kimi, verilən G qrafının karkas qraf olması üçün ondan tsikl əmələ gətirən tillər atılmalıdır. Belə atılan tillərin sayını aşağıdakı təklif verir.

Teoremdən 9.3. Əgər G qrafının n qədər tərəfəsi, m qədər tili, k qədər əlaqəlilik komponentlərə vərsə, onda G qrafının karkasında çevriləməsi üçün atılması zəruri olan tillərin sayı $v(G) = m - n + k$ qədərdir.

Tərəfindən 9.4. $v(G) = m - n + k$ ədəidine G qrafının **tsikl ədədi** deyilir və ya G-nin **tsikl ranqı** deyilir.

$v^*(G) = n - k$ ədəidine G qrafının **ko-tsikl ranqı** deyilir. $v^*(G)$ ədədi G qrafının istənilən karkasına daxil olan tillərin sayıldığında. Başqa sözlə, G qrafının ağac
graf olması üçün zəruri və kafi şərt \(v(G) = 0 \) olmasıdır. Bu isə o deməkdir ki, \(v(G) = m - n + k = 0 \) olmasıdır. Alınır ki, \(m = v^*(G) = n - k \).

9.1. Çəkili qraflarda optimal açac qrafların axtarılmasının məsələlərini. Prim və Kraskal alqoritmləri

Tutaq ki, \(G = (X, U) \) əlaqəli qrafının tilləri yüklüdür və bu qrafda en az yüklü karkasları tapmaq lazımdır. Bu məsələnin bir sira həll alqoritmləri var. Onlardan Prim və Kraskal alqoritmləri ilə tanış olun.

1. Prim alqoritmi (ən yaxın qonşu alqoritmi)

Tutaq ki, \(G = (X, U) \) qrafı verilir və \(W \) – onun çəki matrisidir. Bu qrafda çəkisi (yüklü) en az olan karkası təyin etmək lazımdır.

Prim alqoritmi (ən yaxın qonşu alqoritmi) iki adımdan ibarətdir və \(G \) qrafının \(n \) təpəsi varsa, \(n - 1 \) dəfə yerinə yetiriləcək iterasiya prosedurasıdır. Bu alqoritmin kəməyiə qiyməti (yüklü) en böyük olan açac qrafı (karkası) da təyin edilərək olun.

Tutaq ki, \(G \) qrafının \(X \) təpələr çoxluğu iki kəsişməyən \(X_1 \subset X \) və \(X_2 \subset X \) altçoxluqlarına bölünür: \(X = X_1 \cup X_2, X_1 \cap X_2 = \emptyset \). \(X_1 \) və \(X_2 \) çoxluqları arasındaki \(\rho(X_1, X_2) \) məsafəsini ardıcıllı adımlarla belə təyin edirik:

\[
\rho(X_1, X_2) = \min \{ w_{ij} = \rho(x_i, x_j) \mid x_i \in X_1, x_j \in X_2 \}.
\]
Altağaclarda təpələrin və tillərin sayı hər iterasiyada bir vahid artır. Prim alqoritminin addımları aşağıdakıklardır:

Addım 1. Başlanğıc qiymətlərin mənimsədlənməsi.
\[X_1 = \{x_i\}, \quad x_i - ixtiyari təpədir, \quad X_2 = X - X_1, U_1 = \emptyset.\]

Addım 2. Verilənlorun təzələnməsi.
Elə \((x_i, x_j)\) tili tapılır ki, \(x_i \in X_1, x_j \in X_2\) olsun və
\[\rho(X_1, X_2) = \min\{w_{ij}(x_i, x_j) | x_i \in X_1, x_j \in X_2\}.\]
\[X' = X_1 \cup \{x_j\}, \quad X_2 = X - X', \quad U' = U_1 \cup \{x_i, x_j\}.\]

Addım 3. İterasiyanın başa çatmasının yoxlanılması.
Əgər \(X_1 = X\) olarsa, onda \(G_1 = (X_1, U_1)\) – axtarılan minimal çəkili (yüklü) karkasdır. Əks halda, Addım 2-ə keçməli.

Misal 9.7. Çəki matrisi ilə verilmiş istiqamətlənməmiş qrafda minimal çəkisi olan karkası təyin edin.

\[
W = \begin{bmatrix}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\
 x_1 & -10 & \infty & 5 & \infty & \infty & 14 \\
 x_2 & -6 & 2 & 4 & 8 & \infty & \\
 x_3 & -3 & 1 & 1 & \infty & \\
 x_4 & -6 & \infty & 3 & \\
 x_5 & -5 & \infty & \\
 x_6 & -2 & \\
 x_7 & -
\end{bmatrix}
\]
G qrafı istiqamətlənməmiş qraf olduğundan onun çəki matrisi simmetrikdir və ona görə də onu üçbucaq şəklində yazmaqla kifayətlənilib.
Ən az çəkisi olan karkası Prim alqoritmi ilə tapaq.

Addım 1.

\[X_1 = \{x_1\}, \quad X_2 = \{x_2, x_3, x_4, x_5, x_6, x_7\}, \quad U_1 = \emptyset \] olsun.

1-ci iterasiya.

Addım 2.

\[\rho(X_1, X_2) = w(x_1, x_4) = 5, \]
\[X_1 = \{x_1, x_4\}, \quad X_2 = \{x_2, x_3, x_5, x_6, x_7\}, \quad U_1 = \{(x_1, x_4)\}. \]

Addım 3.

\[X_1 \neq X. \] Addım 2-nin başlangıcına keçid.

2-ci iterasiya.

Addım 2.

\[\rho(X_1, X_2) = w(x_4, x_2) = 2, \quad X_1 = \{x_1, x_2, x_4\}, \]
\[X_2 = \{x_3, x_5, x_6, x_7\}, \quad U_1 = \{(x_1, x_4), (x_4, x_2)\}. \]

Addım 3.

\[X_1 \neq X. \] Addım 2-nin başlangıcına keçid.
3-cü iterasiya.
Addım 2.
\(\rho(X_1, X_2) = w(x_4, x_3) = 3 \), \(X_1 = \{x_1, x_2, x_3, x_4\} \), \(X_2 = \{x_5, x_6, x_7\} \), \(U_1 = \{(x_1, x_4), (x_4, x_2), (x_4, x_3)\} \).
Addım 3.
\(X_1 \neq X \). Addım 2-nin başlanğıçına keçid.

4-cü iterasiya.
Addım 2.
\(\rho(X_1, X_2) = w(x_3, x_5) = 1 \),
\(X_1 = \{x_1, x_2, x_3, x_4, x_5\} \), \(X_2 = \{x_6, x_7\} \),
\(U_1 = \{(x_1, x_4), (x_4, x_2), (x_4, x_3), (x_3, x_5)\} \).
Addım 3.
\(X_1 \neq X \). Addım 2-nin başlanğıçına keçid.

5-ci iterasiya.
Addım 2.
\(\rho(X_1, X_2) = w(x_3, x_6) = 1 \),
\(X_1 = \{x_1, x_2, x_3, x_4, x_5, x_6\} \), \(X_2 = \{x_7\} \),
\(U_1 = \{(x_1, x_4), (x_4, x_2), (x_4, x_3), (x_3, x_5), (x_3, x_6)\} \).
Addım 3.
\(X_1 \neq X \). Addım 2-nin başlanğıçına keçid.

6-ci iterasiya.
Addım 2.
\(\rho(X_1, X_2) = w(x_6, x_7) = 2 \),
\(X_1 = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7\} \), \(X_2 = \emptyset \),
\(U_1 = \{(x_1, x_4), (x_4, x_2), (x_4, x_3), (x_3, x_5), (x_3, x_6), (x_6, x_7)\} \).
Addım 3.

\[X_1 = X . \] Deməli, axtarılan en kiçik yüklü (qiymətli) karkası aldıq. Bu karkasin qiyməti \(w(G_1) = 14 \) və özü aşağıdakı qrafıdır.

\[w(G_1) = 5 + 2 + 3 + 1 + 1 + 2 = 14 . \]

2. Qrafda optimal karkas – ağac qrafın tapılmasi üçün Kraskal alqoritmi

Verilən istiqamətənənmiş çəkili (yüklü) olan \(G=(X,U) \) qrafında minimal (maksimal) çəkisi olan karkası – ağac qrafı təyin etmək alqoritmlərindən ən sadəsi Kraskal alqoritmidir. Bu alqoritm tərəflərinin sayı çox olmayan qraflarda daha effektilidir.

\(G=(X,U) \) qrafı özünün çəki matrisi ilə verilir. Minimal (maksimal) çəkili karkası qurarkən mərhələ-mərhələ hərəkət edilir, yəni tillər içərisindən ən az (ən çox) yüklə olan til götürülür və hər sonra götürülən til elə olmalıdır ki, onun yüklü (çəkisi) yerə qalan tillərin çəkiliərindən az (çox) olmaqda əvvəlki tillərə əlavə etdikdə təsik əmələ gəlməsin. Bu qayda ilə proses bütün tillər nəzərdən keçənədək davam etdirilir.

Kraskal alqoritmini əyani təsvir etmək məqsədilə
tillərin qiymətlərinə \(W \) çəki matrisində ruı mərabə ilə artan sıradə nömrələyək və bu nömrələri addimlar ardıcılığı kimi qiymətədən tələb olunan karkası onun tillərinin qiymətlərinə görə quraq.

Misal 9.8. \(G \) qrafı çəki matrisi ilə verilir, istiqamətlənməmiş qraf olduğundan \(W - \) simmetrik matrisdir və üçbucaq şəklində yaza bilsək.

\[
\begin{array}{cccccccc}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\
 - & 3_I & 8_{VI} & \infty & 3_I & 6_{IV} & \infty \\
 - & 7_V & 6_{IV} & \infty & \infty & 4_{II} & \\
 - & 4_{II} & 6_{IV} & \infty & 10_{VIII} & \\
 - & 5_{III} & 7_V & \infty & & & \\
 - & 8_{VI} & 9_{VII} & \infty & & & \\
 - & \infty & & & & & \\
 - & & & & & & \\
\end{array}
\]

Minimal çəki: \(3 + 3 + 4 + 4 + 5 + 6 = 25 \) .

Maksimal (ən çox) çəkili karkas qraf da analoji qayda ilə təqəlir.

Maksimal çəki: \(8 + 7 + 6 + 8 + 9 + 10 = 48 \) .
10. Qraf üzərində gəzinti

10.1. Eyler qrafı. Eyler zənciri və tsikli

Tərif 10.1. Əgər istiqamətlənməmiş G qrafında onun hər hansı bir x_i təpəsindən çıxaraq hər tildən yalnız bir dəfə keçməklə yənə x_i təpəsinə qayitmaq mümkin olarsa, belə tsiklə **Eyler tsikli** deyilir. Eyler tsikli olan qrafə **Eyler qrafı** deyilir.

Teorem 10.1 (Eyler). İstiqamətlənməmiş multiqrafın Eyler qrafı olması üçün zəruri və kafı şərt onun bütün təpələrinin cüt dərəcəli olmasıdır.

Məsələn, "Yeddi körpü" məsələsinin G_1 qrafı Eyler qrafı deyil, ona görə də bu məsələdə qoyulan sualın cavabı: yox olar. Lakin "Məhəmməd qılıncı" olan qraf Eyler qrafıdır, çünki $d(A) = d(B) = d(D) = d(E) = 2$, $d(C) = 4$, yəni təpələr cüt dərəcəlidir. Ona görə də onu birbaşa cəkmək olur.

Multiqraflarda Eyler tsiklini aşkar edən alqoritm **Flöri alqoritmi** adlanır.

Flöri alqoritmi

Flöri alqoritmi aşağıdakı qaydalardan ibarətdir.

1. Hər hansı bir x_1 təpəsi seçilir.

2. x_1 təpəsinə insident olan hər hansı u_i tili seçilir və bu tilə 1 nömrəsi verilir (bu til keçilmiş hesab olunur). u_i tili silinir və $u_i = (x_1, x_2)$ tili üzrə x_2 təpəsinə keçilir.

3. Hər bir keçilən til silinir və bu tilə ondan əvvəl gələn tilin nömrəsindən bir vahid çox nömrə verilir.

4. x təpəsini çatdıqda, başqa imkan varsa, onu x_1 təpəsi ilə birleşdirən tili seçməməli.

5. x təpəsini çatdıqda körpü olan (atılması verilən
qrafi əlaqəsiz altqraflara ayırən til) tili seçməməli.
6. Qrafda bütün tillər nömrələnmişə, deməli, Eyler tsiklä alınımışdır.

Misal 10.1. G qrafi Eyler qrafıdır m? Eyler tsiklä qurun.

Tərəflərin dərəcələri cütdür, deməli, bu qrafda Eyler tsiklä var. $d(x_1) = d(x_2) = d(x_4) = d(x_5) = 2$, $d(x_3) = d(x_6) = 4$.

1. x_6 təpəsini seçək və (x_6, x_1) tilinə 1 nömrəsini verək.
2. x_1 təpəsində (x_1, x_3) tili insidentdirdi, bu tıla 2 nömrəsini verək.
3. x_3 təpəsi dörd tıla $(x_1, x_3), (x_2, x_3), (x_4, x_3)$ və (x_5, x_3) tillərinə insidentdirdi. Bu tillərdən (x_1, x_3) nömrələnib, qalan tillər körpü deyil, yəni onlardan hər hansı birinin atılması verilən qrafi əlaqəsiz altqraflara ayırən (x_2, x_3) tilinə 3 nömrəsini verək.
4. x_2 təpəsində insident olan (x_2, x_6) tilinə 4 nömrəsini verək.
5. x_2 təpəsində insident (x_6, x_2) tili artıq nömrələnib, $(x_6, x_4), (x_6, x_5)$ tilləri də insident-dirlər. Onlardan hər hansı birinin atılması verilən qrafi əlaqəsiz altqraflara ayırən, yəni bu tillər körpü deyil. (x_6, x_4) tilinə 5 nömrəsini verək.
6. x_4 təpəsində (x_4, x_3) tili insidentdirdi, bu tıla 6 nömrəsini verək.
7. x_2 təpəsinə insident olan $(x_3,x_2),(x_3,x_1),(x_3,x_4)$
tilləri nömrələnib (silinmiş hesab olunurlar), lakin
(x_3,x_5) tili qalır. Bu tilə 7 nömrəsini verək.

8. x_5 təpəsinə (x_5,x_6) tili insidentdir, bu tilə 8
nömrəsini verək.

Beləlikdə, qrafin bütün tilləri nömrələnib, deməli,
Eyler təşkil edən $S = (x_6,x_1,x_3,x_2,x_6,x_4,x_3,x_5,x_6)$
qurulmuşdur.

Teoremdən 10.2. İlaqəli G multiqrafında Eyler
zəncirinin olması üçün zəruri və kafi şərt bu qrafda iki
tək dərəcəli təpələrin olmasıdır.

Qeyd. Bu teoremən alınır ki, istənilən Eyler
zənciri tək dərəcəli təpələri birləşdirir. Beləlikdə, asan
yoxlanıla bilən kriteri alınır:

1) Əgər G psevdoqrafının bütün təpələri cüt dərə-
cəldirsə, onda bu qrafda Eyler təşkil edən və bu təşkilə
grafın hər bir tili yalnız bir dəfə istirak edir.

2) Əgər multiqraf G-də düz iki tək dərəcəli təpələr
varsa, onda bu qrafda Eyler zənciri və bu zəncir tək
dərəcəli təpələri birləşdirir və yerdə qalan təpələrdən
yalnış bir dəfə keçir.

Psevdoqrafda Eyler zəncirini almaq üçün tək
dərəcəli x_i və x_j təpələri yeni bir (x_i,x_j) tili ilə birlə-
şədirilir və yeni alınan qrafın bütün təpələrinin dərəcələri
cüt olduğunudan bu qrafda Eyler təşkil qurulur. Sonra isə
bu təşkilən (x_i,x_j) tili atılır, nəticədə Eyler zənciri
alınır.

Tərif 10.2. Əgər istiqamətlənməmiş G qrafının hər
bir tili müəyyən bir zəncirə daxildirsə və belə zəncirərin ortaq tilləri yoxdursa, yəni zəncirələr təəqe müəyyən olunursa, onda deyirlər ki, tillər üzərə kəsişməyən zəncirələr çoxluq G qrafını örtür.

Teorem 10.3. Əgər G qrafında k sayıda tək dərcəsli təpələr varsa (onların sayı k Eylerin səxt tutma Lemma-sına görə cüt ədəddir), onda G qrafını örtən tillər gərək kəsişməyən zəncirələrin sayı k ədəddir.

Nəticə. $k = 2$ olubdakı G qrafını örtən və qrafın hər bir tiliinin bir dəfə istirak etdiyi zəncir Eyler zənciridir.

10.2. Hamilton zənciri və tsikli

Riyazi məsələ kimi "Səyyar tacir" məsələsini belə qoymaq olar: verilən qrafın hər hansı bir x_i təpəsindən gəzintiya çıxan tacir bu qrafın hər bir təpəsində yalnız bir dəfə keçə bilər və x_i təpəsinə qayda bilərmə? Daha ümumi şəkildə məsələni belə də qoymaq olar: müəyyən qrafın hər cüt təpəsində müəyyən funksiyanın qiymətləri verilir və bu qrafda onun hər təpəsində yalnız bir dəfə
keçən elə təskil tapmaq lazımdır ki, bu təskil üzrə funksiyanın qiyməti minimum və ya maksimum olsun.

"Səyyar tacir" məsələsinin analitik həlli indiyənək tapılmayır (baxmayaq ki, Köniq üsulu ilə onun kifayət qədər yaxşı həlli var).

Eylerin "Yeddi körpü", Hamiltonun "Səyyar tacir" məsələlərinə xəzin olan daha bir məsələ var. Bu məsələ "Yolların minimal şəbəkəsi haqqında" məsələdir. Bu məsələnin həlli sədədir və minimal qiymətli ağac qrafın qurulmasına gətirilir.

Tərif 10.3. Əgər hər hansı zəncir (tsikl) G qrafının hər bir təpəsindən yalnız bir dəfə keçərsə, onda belə zəncir (tsikl) **Hamilton zənciri (tsikli)** adlanır.

Teorem 10.4. Əgər G qrafında Hamilton təskil varsa, onda bu qrafda ayirici təpələr yoxdur.

Kafi şərt vərəcək bir sira təkliflər var. Onlardan biri Norveç alimi O.Oreyə məzsusdur.

Teorem 10.5 (O.Ore). Əgər iləyi olmayan əlaqəli istiqamətlənməmiş G qrafının istənilən iki qonşu olmayan müxtəlif x_i və x_j, $i \neq j$, təpələrinin dərəcələri $d(x_i) + d(x_j) \geq n$, $n \geq 3$, şərtini ödəyirsə, onda G qrafında Hamilton təskil var.
Nəticə. Əgər $|X| = n \geq 3$ və $G = (X, U)$ qrafının istənilən x_i təpəsinin dərəcəsi $d(x_i) \geq \frac{n}{2}$ şərtini ödəyirə, onda G qrafında Hamilton tsikli var.

Qeyd. Eyler tsiklindən fərqlə olaraq, G qrafında Hamilton tsikli varsa, onda ona qrafın bütün tilləri daxil olmaya da birlə, lakin Hamilton qrafı hökmən əlaqəli olmalıdır.

Əlavə onu da qeyd edək ki, G qrafı n təpəsi olan psevdoqrafdırsa, onda bu qrafda istənilən Hamilton zəncərinin uzunluğu $n - 1$ olar, Hamilton qrafının isə uzunluğu n olar.

Əgər G qrafı istiqamətlənmiş qrafdırırsa, onda bu qrafın Eyler və Hamilton qrafı olması yuxarıda verilən təkliflərə uyğun aşağıdakı təklifləri vermək olar.

Teoremlər.

10.6. Êstiqamətlənmiş $G = (X, U)$ qrafının Eyler qrafı olması üçün zəruri və kafi şərt onun istənilən $x_i \in X$ təpəsinin daxilolma $d^+(x_i)$ və çıxma $d^-(x_i)$ yarımçəclərinin bərabər olmasıdır: $d^+(x_i) = d^-(x_i)$.

Nəticə. Əgər G istiqamətlənmiş Eyler qrafıdır, onda G qrafı ortaq tilləri olmayan konturların (qapalı yolların) birləşməsidir.

10.7. Əlaqəli istiqamətlənmiş G qrafında qapalı olmayan Eyler zəncərinin olması üçün zəruri və kafi şərt bu qrafda elə iki x_i və x_j təpələrinin olmasıdır ki, bu təpələrin daxilolma $d^+(x_i)$ və çıxma $d^-(x_i)$ yarımçəcləri üçün və onlardan fərqli x_k təpəsi üçün
\[d^-(x_i) = d^+(x_i) + 1, \]
\[d^-(x_j) = d^+(x_j) - 1, \]
\[d^-(x_k) = d^+(x_k) \]
şərtləri ödənilsin.

Teorem 10.8. Tutaq ki, \(G \) qrafı möhkəm əlaqəli, \(n \) təpəsi olan, əlgəyi və paralel tilləri olmayan istiqamətlənmiş qrafıdır. Əgər bu qrafın istənilən üst-üstə düşməyən iki qonşu olmayan \(x_i \) və \(x_j \) təpələri üçün \(d(x_i) + d(x_j) \geq 2n - 1 \) şərti ödənilərsə, onda \(G \) qrafında Hamilton konturu var.

Çalısmalar 10

Verilən qraf Eyler və Hamilton qrafıdır? Eyler və Hamilton tsiklərini qurun.

1) \[\begin{array}{cccc}
 x_1 & x_2 & x_3 & x_4 \\
 x_5 & & & \\
 x_6 & x_7 & & \\
\end{array} \]

2) \[\begin{array}{cccc}
 x_1 & x_2 & x_3 & x_4 \\
 x_5 & & & \\
 x_6 & x_7 & & \\
\end{array} \]

3) \[\begin{array}{cccc}
 x_1 & x_2 & x_3 & x_4 \\
 x_5 & & & \\
 x_6 & x_7 & & \\
\end{array} \]

4) \[\begin{array}{cccc}
 x_1 & x_2 & x_3 & x_4 \\
 x_5 & & & \\
 x_6 & x_7 & & \\
\end{array} \]

Tsikl dedikdə verilən qrafda istənilən qapalı marşrut başa düşülür. Aydınlıq ki, marşrutda bütün təpələr və tıllər müxtəlifdirsə, onda tsikl sade adlanır.

Tutaq ki, $G_1 = (X_1, U_1)$ qrafı istiqamətlənməmiş qrafdır və onun hər bir tıllını bir-birinə əksində yönəlmış bir cüt til ilə əvəz edib G_1-ə uyğun $G = (X, U)$ istiqamətlənmüş qrafını almişiq. G qrafında hər hansı $\mu = x_1u_1x_2u_2\ldots x_ku_kx_1$ tsiklini götürək. Bu tsikldə $u_k = (x_{k-1}, x_k)$-dir, yəni istiqamət məlumdur. Başqa sözlə, μ tsikli boyunca düzümdə və əksində hərəkət etmək olar. Belə bir tsikllər matrisi düzəldək: tsikllər matrisini S ilə işarə edək və onun s_{ij} elementləri aşağıdakı qayda ilə təyin edək:

$$s_{ij} = \begin{cases}
1, & \text{tsikl } u_j \text{ tıllinin istiqamətindən keçirdə}, \\
-1, & \text{tsikl } u_j \text{ tıllinin əks istiqamətindən keçirdə}, \\
0, & \text{tsikl } u_j \text{ tıllindən keçmirə}.
\end{cases}$$

Misal 11.1. $G_1 = (X_1, U_1)$ qrafı verilir. Bu qrafın tıllərinə ixtiyari istiqamət verərk $G = (X, U)$ qrafını alaq.
$\mu_1 = x_1u_1x_2u_2x_5u_5x_1$, $\mu_2 = x_1u_5x_5u_3x_4u_8x_1$,
$\mu_3 = x_3u_3x_4u_7x_3u_6x_5$, $\mu_4 = x_2u_4x_3u_6x_5u_2x_2$
tsiklərinin matrisini yazmalı.

$$
S =
\begin{bmatrix}
\mu_1 & u'_1 & u'_2 & u'_3 & u'_4 & u'_5 & u'_6 & u'_7 & u'_8 \\
\mu_2 & -1 & -1 & 0 & 0 & -1 & 0 & 0 & 0 \\
\mu_3 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
\mu_4 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
\end{bmatrix}
$$

Qeyd 1. Əgər tsiklərin tərəfində istiqamətlər əvvəlcədən məlumdursa və hər hansı μ tsikli müəyyən u_k tilinin istiqamətindən v dəfə, əks istiqamətindən isə ℓ dəfə keçərsə, onda tsikl matrisinin uyğun elementində $v - \ell$ odlu yazılır.

Qrafın tsikllərinin S matrisinin μ_i-ci sətir elementlərinə μ_i tsiklinə uyğun $C(\mu_i)$ – vektor-tsiklinin koordinatları kimi baxmaq olar və belə koordinatların sayı vektor-tsiklləri xətti fəzasının ölçüsü olsun. Məsələn, yuxaridaki misalda $\mu_1, \mu_2, \mu_3, \mu_4$ tsikllərinə uyğun vektor-tsikllər bunlardır:
\[C(\mu_1) = (-1, -1, 0, 0, -1, 0, 0, 0) \]
\[C(\mu_2) = (0, 0, 1, 0, 1, 0, 0, 1) \]
\[C(\mu_3) = (0, 0, 1, 0, 0, 1, 0, 1) \]
\[C(\mu_4) = (1, 0, 0, 1, 0, 1, 0, 0) \]

Xətt fəzəninin ölçüsüü 8-dir. Tsikllər fəzasında iki yerli həlqəvi cəm: \(\oplus \) və həlqəvi vurma: \(\otimes \) omməllərini təyin etmək olar, belə ki, bu omməllər üçün
\[0 \oplus 0 = 1 \oplus 1 = 0, \quad 0 \oplus 1 = 1 \oplus 0 = 1, \]
\[0 \otimes 0 = 0 \otimes 1 = 1 \otimes 0 = 0, \quad 1 \otimes 1 = 1. \]

Vektor-tsikllərin həlqəvi cəmi belə təyin olunur:
\[C(\mu_i) = (a_{i_1}, a_{i_2}, \ldots, a_{i_k}), \quad C(\mu_j) = (b_{j_1}, b_{j_2}, \ldots, b_{j_k}) \]
\[C(\mu_i) \oplus C(\mu_j) = (a_{i_1} \oplus b_{j_1}, a_{i_2} \oplus b_{j_2}, \ldots, a_{i_k} \oplus b_{j_k}) \]

Vektor-tsikllərin müəyyən \(\lambda \) ədədinə həlqəvi hasili belədir:
\[\lambda \otimes C(\mu_i) = (\lambda \otimes a_{i_1}, \lambda \otimes a_{i_2}, \ldots, \lambda \otimes a_{i_k}) \]

Onu da qeyd edək ki, vektor-tsikllərin həlqəvi cəmi onları təşkil edən uyğun tillər çoxluğunun həlqəvi cəmi (iki moduluna görə cəmlənməsi) deməkdir, yəni \(A \) çoxluğu \(\mu_i \) tsiklini təmsil edən tillər çoxluğudursa, \(B \) isə \(\mu_j \) tsiklini təmsil edən tillər çoxluğudursa, onda bu tsikllərə uyğun vektor-tsikllərin \(a_i \) və \(b_j \) koordinatlarının \(a_i \oplus b_j = 1 \) olmasının üçün ya \(a_i = 1, \ b_j = 0 \), ya da \(a_i = 0, \ b_j = 1 \) olmalıdır, yəni ya \(u_i \notin A - B \), ya da \(u_j \notin B - A \) olmalıdır. Deməli, \(C(\mu_i) \oplus C(\mu_j) \) həlqəvi
Qeyd 2. Əgər G qraf istiqamətlənəməmiş qrafdırsa, onda bu qrafin tsikllər matrisi S-in s_{ij} elementlərini belə təyin etmək olar:

$$s_{ij} = \begin{cases} 1, & \text{μ}_i \text{ tsikli } u_j \text{ tilindən keçirə,} \\ 0, & \text{μ}_i \text{ tsikli } u_j \text{ tilindən keçmirə.} \end{cases}$$

Tsikllərin xətti asılı olub-olmamasını onlara uyğun vektor-tsikllərin xətti asılı olub-olmaması ilə təyin etmək olar.

Tərif. Əgər $C(μ_1), C(μ_2), \ldots, C(μ_m)$ vektor-tsikllərdən hər hansı biri yerda qalanlarının xətti kombinasiyası şəklinə göstərilə bilmir, yeni

$$C(μ_{i_k}) \neq C(μ_{i_1}) \oplus C(μ_{i_2}) \oplus \ldots \oplus C(μ_{i_{k-1}}),$$
onda onlara uyğun $μ_1, μ_2, \ldots, μ_m$ tsiklləri xətti asılı olmayan adlanır.

G qrafının xətti asılı olmayan tsikllərinə tsikllər fəzasının bazisi deyilir və ya bazis tsiklləri deyilir.

Aydındır ki, tsikllər fəzasında onun əsasında $μ$ tsikli bazis tsikllərinin xətti kombinasiyası şəklinə, yeni $μ_1, μ_2, \ldots, μ_m$ – bazis tsikllərində göstərilə bilərsə, onda

$$C(μ) = C(μ_1) \oplus C(μ_2) \oplus \ldots \oplus C(μ_m).$$

Misal 11.2.

$$C(μ_1) = (0,1,1,0,0,0,0,1,1),$$
$$C(μ_2) = (1,0,0,0,0,1,1,1,0),$$
$$C(μ_3) = (1,0,0,1,1,1,0,1,1),$$
$$C(μ_4) = (0,1,1,1,1,0,1,1,0)$$

144
vektor-tsiklləri bazis tsikllər deyildir, çünki $C(\mu_4)$ qalanların xətti kombinasiyadır, yəni

$$C(\mu_4) = C(\mu_1) \oplus C(\mu_2) \oplus C(\mu_3).$$

Teorem 11.1. Ógər G multiqrafında tsikllər varsa, onda onun bazis tsiklləri də var.

Teorem 11.2. G qrafinin xətti asılı olmayan tsikllərinin maksimal sayı onun $v(G)$ tsikl ədədində bərabərdir, burada $v(G) = m - n + k$, n – təpələrin sayı, m – tillərin sayı, k – isə qrafın əlaqəlilik komponentlərinin sayıdır.

Bazis tsikllərinin tapılması alqoritmi. Tutaq ki, G qrafının tsikl ədədi $v(G) \neq 0$. G qrafında karkas – ağac qrafı alına üçün onda tsikl emələ gətirən tilləri atmaq lazımdır. Belə atılan tillərin sayı $v(G) = m - n + 1$ ədədində bərabərdir. Atılan $v(G)$ qədər tilləri T karkas qrafının (tillərin sayı $v^*(G) = n - k$ ədədidir) uyğun iki təpəsi arasına elavə etsək, onda G qrafında sade tsikllərə almış oluruq.

Misal 11.3.
\[m = 8, \quad n = 4, \quad k = 1, \]
\[\nu(G) = m - n + k = 8 - 4 + 1 = 5. \]
\[\nu^*(G) = n - k = 4 - 1 = 3. \]

Deməli, 5 til atılmalıdır. \(T \) karkasının 3 tili var.

Atılan tillər punktirlə (qırğ-qırğ xətlərlə) göstərilmişdir, onlar bunlardır:
\[\{u_6 = (x_1, x_4), u_7 = (x_2, x_3), u_8 = (x_3, x_2), u_3 = (x_2, x_4), u_4 = (x_3, x_4)\}. \]

Bu tilləri növbə ilə bir-bir \(T \) karkasına əlavə etsək, təsiklər alınır:
\[\mu_1 = x_1 u_2 x_2 u_3 x_4 u_5 x_1; \]
\[\mu_2 = x_1 u_5 x_4 u_4 x_3 u_1 x_1; \]
\[\mu_3 = x_1 u_3 x_4 u_6 x_1; \]
\[\mu_4 = x_1 u_2 x_2 u_7 x_3 u_1 x_1; \]
\[\mu_5 = x_1 u_2 x_2 u_8 x_3 u_1 x_1. \]

Bu təsiklər verilən \(G \) qrafının bazis təsikləridir. \(G \) multiqrafdır.

Indi isə bazis təsiklərin təsik matrisində yerlərin (qurulmasının) göstərək. Bunun üçün \(G \) qrafının tillərinə ixtiyari istiqamətlər verək və alınan tilləri \(u'_1, u'_2, \ldots, u'_8 \) kimi isarə edək.
\(\mu_1, \mu_2, \mu_3, \mu_4 \) və \(\mu_5 \) tsikllərinin tsikl matrisini yazaq.

\[
\begin{bmatrix}
 u_1' & u_2' & u_3' & u_4' & u_5' & u_6' & u_7' & u_8' \\
\end{bmatrix}
\begin{align*}
\mu_1 &= \begin{bmatrix} 0 & 1 & 1 & 0 & -1 & 0 & 0 & 0 \end{bmatrix} \\
\mu_2 &= \begin{bmatrix} -1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix} \\
S &= \begin{bmatrix} \mu_3 & \mu_4 & \mu_5 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 & -1 & 0 & 0 \end{bmatrix} \\
\mu_4 &= \begin{bmatrix} -1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \\
\mu_5 &= \begin{bmatrix} -1 & 1 & 0 & 0 & 0 & 0 & 0 & -1 \end{bmatrix}
\end{align*}
\]

Bu matrisin ranqı \(v(G) \) – tsikl əpədində bərabərdir, yeni onun sətirlərinin sayına bərabərdir.

Əgər \(\{\mu_1, \mu_2, \ldots, \mu_5\} \) sistemi \(G \)-nin bazis tsikllərdirdiysə və \(G \) qrafının tsikl matrisinin sətirləri \(C(\mu_i) \) vektor-tsikllərdirdiysə, onda \(T \) karkas qrafına daxil olmayan tillər uyğun sütunların elementlərindən \(v(G) \) tərtibli diaqonal kvadrat matris düzəltmək olar (bu sütunlar düzbucaqlılar daxilində sətirlərlə alınmışdır).

11.2. Tsikllərin fundamental sistemi və tsiklik ranq

Tutaq ki, \(G = (X, U) \) istiqamətlənməmiş qrafıdır və bu qrafın \(n \) qədər təpələri, \(m \) qədər tillər, \(k \) qədər əlaqəliilik komponentləri var. \(T \) isə \(G \) qrafının karkası (ağac qrafı) olsun. \(T \) karkasının \(v^*(G) = n - k \) qədər tillər var və bu tillər \(u_1, u_2, \ldots, u_{n-k} \) olsun. Bu tillərə \(T \) ağacının \textbf{budaqları} deyilir. \(G \) qrafında \(T \) ağacına (karkasına) daxil olmayan tillərin saylığı \(v(G) = m - n + k \).
qədərdir və bu tillər $v_1, v_2,\ldots, v_{m-n+k}$ kimi işarə edək. $v_1, v_2,\ldots, v_{m-n+k}$ – tillərindən T karkasının vətərləri deyilir.

Yuxarında qeyd etdi ki, T karkasına vətərlərdən hər hansı birini, məsələn, v_i ilə vətərədə sədə təsəklənir. Belə alınan C_i tsiklinə G qrafının v_i vətərənə nəzərən təyin olunan fundamental tsikli deyilir.

T karkasının $v_1, v_2,\ldots, v_{m-n+k}$ vətərlərindən nəzərən təyin olunan $C = \{C_1, C_2,\ldots, C_{n-m+k}\}$ tsikllər çoxluğuna G qrafının fundamental tsikllər sistemi deyilir. Bu çoxluğun əmək G qrafının tsikl ədədi $v(G)$-yə bərabərdir: $v(G) = m - n + k$. Bu ədədə həm də G qrafının tsikl ranqı deyilir. G qrafının bütün tillərindən $v_1, v_2,\ldots, v_{m-n+k}$, u_1, u_2,\ldots, u_{n-k} – ardıcıllığını (w_1, w_2,\ldots, w_m) kimi işarə edək. Onda C_i fundamental tsiklinə uyğun vektor-tsikli $\overline{c} = (c_{i_1}, c_{i_2},\ldots, c_{i_m})$ kimi işarə etsək, onun c_{ij} koordinatları belə təyin edilər:

$$c_{ij} = \begin{cases} 1, & w_j \in C_i \text{ olduqda,} \\ 0, & w_j \notin C_i \text{ olduqda.} \end{cases}$$

$C = \{C_1, C_2,\ldots, C_{n-m+k}\}$ – fundamental tsikllər çoxluğunun tsikllər matrisi belə olaraq:

$$C^* = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1m} \\ c_{21} & c_{22} & \cdots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{v(G),1} & c_{v(G),2} & \cdots & c_{v(G),m} \end{pmatrix}$$
Bu matrisin açıq şəkli aşağıdakı matrisdir:

$$\begin{bmatrix}
1 & 0 & 0 & \cdots & 0 & c_{1,v(G)+1} & c_{1,v(G)+2} & \cdots & c_{1,m} \\
0 & 1 & 0 & \cdots & 0 & c_{2,v(G)+1} & c_{2,v(G)+2} & \cdots & c_{2,m} \\
0 & 0 & 1 & \cdots & 0 & c_{3,v(G)+1} & c_{3,v(G)+2} & \cdots & c_{3,m} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 & c_{v(G),v(G)+1} & c_{v(G),v(G)+2} & \cdots & c_{v(G),m}
\end{bmatrix}$$

Beləlikdə, $C^*=(C_1^*|C_2^*)$, burada C_1^* — vahid matrisinin tərtibi $v(G)$-dir və T-nin $v_1, v_2, \ldots, v_{n-k}$ vətərlərinə uyğun C_i — fundamental tıqlər matrisidir, C_2^*– isə G qrafında T-nin alınması üçün $v(G)=m-n+k$ qədər atılacaq $u_1, u_2, \ldots, u_{n-k}$ tillərənə uyğun matrisdir.

Misal 11.4. G qrafının fundamental tıqlər matri-sini təyin edin.

$$v(G)=m-n+k, \quad m=8, \quad n=6, \quad k=1, \quad v^*(G)=n-k=5-1=4, \quad v(G)=8-6+1.$$ Deməli, $v_1=(x_1, x_5), \quad v_2=(x_5, x_6), \quad v_3=(x_4, x_5)$ tilləri T– ağac
qrafının (karkasın) vətərləridir. Onları ardıcıl T-ya əlavə etdikdə üç til alınır:

\[\mu_1 = x_1 v_1 x_5 u_3 x_2 u_1 x_1 ; \]
\[\mu_2 = x_5 u_3 x_2 u_4 x_6 v_2 x_5 ; \]
\[\mu_3 = x_2 u_5 x_4 v_3 x_6 u_4 x_2 . \]

Bu tsikllərə uyğun vektor-tsiklləri

\[c_i = (c_{i_1}, c_{i_2}, c_{i_3}, c_{i_4}, c_{i_5}, c_{i_6}, c_{i_7}, c_{i_8}) , \ i = 1,2,3 \]

işarə edək və \(C = \{c_1, c_2, c_3\} \) — fundamental tsikllərin matrisini yazəq:

\[
C^* = \begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
\end{bmatrix}
\]

bu rada \(u_1, u_2, u_3, u_4, u_5 \) tilləri T karkasının budaqlarıdır, ayrılımiş ikinci matris onlara uyğun matrisdir.

Çalışmalar 11

1)

2)
12. Qrafın asılı olmayan və dominant təpələr çoxluqları

12.1. Qrafın asılı olmayan təpələr çoxluğu.
Qrafın daxili dayanıqlıq ədədi

Qrafın qonşu olmayan təpələr çoxluğuna onun asılı olmayan təpələr çoxluğu deyilir. Əgər belə təpələr çoxluğu başqa asılı olmayan təpələr çoxluğunun məxsusi altçoxluğu deyilsə, onda ona maksimal asılı olmayan təpələr çoxluğu deyilir. Maksimal asılı olmayan təpələr çoxluğunun elementlərinin sayına (çoxluğun gücüne) baxılan G qrafının daxili dayanıqlıq ədədi deyilir və $\alpha(G)$ kimi işarə olunur:

$$\alpha(G) = \max|S_i|,$$

burada S_i-lər qrafınin daxili dayanıq (asılı olmayan) təpələrin müəyyən çoxluqlarıdır. $\alpha(G)$ ədədi G qrafının təpələrə görə qeyri-sıxlıq ədədi de deyilir.

Amerika riyaziyyatçısı K.E.Şennon müəyyən etmişdir ki, qrafın asılı olmayan təpələrinin çoxluqları informasiyalar (məlumatlar) nəzəriyyəsində böyük əhəmiyyət kəsb edir. Informasiyaların ötürüləməsi prosesi qraf şəklində göstərsək, onda siqналların səhvisiz ötürüləməsinin maksimal sayı asılı olmayan təpələrin maksimal çoxluğu uytundur.

Tutaq ki, istiqamətlənmiş $G = (X, F)$ qrafı verilir, burada F – qrafın təpələrinin birqiymətli olmayan inikasıdır.

Əgər qrafın təpələrinin hər hansı $S \subset X$ altçoxluğu üçün
\[S \cap FS = \emptyset \text{ və ya } S \cap F^{-1}S = \emptyset \quad (12.1) \]
şərti ödənilərsə, onda \(S \) altçoxluğu **daxili dayanıq** adlanır.

Misal 12.1. \(G \) qrafında
\(S_1 = \{A, D, K\}, \ S_2 = \{B, K\} \)
altcəoxluqları daxili dayanıqdır mı?
Cavab: \(S_1 \) və \(S_2 \) üçün \(S_i \cap FS_i = \emptyset, \ i = 1,2 \), şərtini yoxlamalı.
\[\begin{align*}
FA &= \{B, E, Q\}, \ FD = \{E\}, \ FK = \{H\}.
\end{align*} \]
Deməli,
\[\begin{align*}
FS_1 &= F\{A, D, K\} = FA \cup FD \cup FK =
= \{B, E, Q\} \cup \{E\} \cup \{H\} = \{B, E, Q, H\}.
\end{align*} \]
\[\begin{align*}
S_1 \cap FS_1 &= \{A, D, K\} \cap \{B, E, Q, H\} = \emptyset
\end{align*} \]
olduğundan \(S_1 \) – təpələrin daxili dayanıq (əsili olmayan) çoxluluqdur.
İndi isə \(S_2 = \{B, K\} \) çoxluğunu üçün (12.1) şərtini yoxlayaq.
\[\begin{align*}
FB &= \{A, D, C\}, \ FK = \{H\},
\end{align*} \]
\[\begin{align*}
FS_2 &= F\{B, K\} = FB \cup FK =
= \{A, D, C\} \cup \{H\} = \{A, D, C, H\}.
\end{align*} \]
\[\begin{align*}
S_2 \cap FS_2 &= \{B, K\} \cap \{A, D, C, H\} = \emptyset,
\end{align*} \]
deməli, \(S_2 \) – təpələrin asılı olmayan altçoxluluqdur. Onda daxili dayanıqlıq \(\alpha(G) \) ədədi üçün
\[\alpha(G) = \max|S_i| = |S_i| = 3 \]
olar.
İlgəksiz G qrafında təpələrin daxili dayanıq altçoxluqlarını tapmaq məqsədə mürəkkəb məsələlərdən bərədir. Mümkin olan üsullardan birini fransız alimi K.Maqu (K.Maghout) təklif etmişdir.

Maqu üsulu. Tutaq ki, ilgəksiz $G=(X,U)$ qraf verilir, $X=\{x_1,x_2,\ldots,x_n\}$, $U=\{u_1,u_2,\ldots,u_m\}$, F isə təpələrin inikasıdır. Maqu x_i təpələrinin məntiqi dəyişənələr kimi bəxir və $x_i \in \{0,1\}$, yəni x_i – doğru qiymət -1, yalan qiymət -0 ala biler. $S \subset X$ – müəyyən təpələr çoxluğudur.

Əgər $x_i \notin S$ -dirsə, onda $x_i = 0$ və ya $\bar{x}_i = 1$ olar.

Əgər $x_j \in Fx_i, i \neq j$, onda $\alpha_{ij} = 1$, əks halda $\alpha_{ij} = 0$.

Bu şərtlər daxilində, $S \cap FS = \emptyset$ şərtini nəzərcə almaqla, belə bir məntiqi mündə doğrudur:

\[
(i \neq j, x_i \in Fx_j \text{ və ya } x_j \in Fx_i) \Rightarrow (x_i \notin S \text{ və ya } x_j \notin S).
\]

Bu mündənən dizyunksiya əməlinin köməyilə belə yazma bilişik:

\[
i \neq j, (\alpha_{ij} \lor \alpha_{ji}) \lor \bar{x}_i \lor \bar{x}_j = 1,
\]

və ya de Morqan qaydasını nəzərcə alsaq:

\[
i \neq j, \; \bar{\alpha}_{ij} \land \bar{\alpha}_{ji} \lor \bar{x}_i \lor \bar{x}_j = 1. \tag{12.2}
\]

(12.2) məntiqi tənliyini G qrafının cüt-cüt bütün təpələrin üçün yazsaq, onda

\[
\Phi_S = \Lambda_{i \neq j} (\bar{\alpha}_{ij} \lor \bar{\alpha}_{ji} \lor \bar{x}_i \lor \bar{x}_j = 1) =
\]

\[= \Lambda_i (\bar{x}_i \lor (\land (\bar{\alpha}_{ij} \lor \bar{x}_j))) = 1 \tag{12.3}
\]
(12.3) münasibətində mötərlərə vuruq açıq və alınan ifadədə udulma qanunu \(a \lor ab = a(1 \lor b) = a \cdot 1 = a\), idempotentlıq qanunu \(a \lor a = a\), \(a \cdot a = a\), ziddiyyət qanunu \(a \cdot \overline{a} = \overline{a} \cdot a = 0\) tətbiq etməkən sadələşdirən aparmaq olar. Noticədə təpələrə uyğun məntiqi \(x_i\) dəyişənlərinin istirak etdiyi dizyunktiv hədələr (məntiqi toplananlar) alınır. Hər bir belə dizyunktiv həddə inklarları istirak etməyən məntiqi \(x_i\) dəyişənlərinə uyğun \(x_i\) təpələr çoxluğu daxili dayanıq (əsaslı olmayan) təpələrin altçoxluğu olar.

Misal 12.2. Təpələrin qonşuluq matrisi ilə verilən ilgəksiz \(G\) qrafının asılı olmayan təpələr çoxluğunu Maqu üsulu ilə tapın.

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(B)</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>(C)</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(D)</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\overline{\alpha}_{ij} \lor \overline{x}_i \lor \overline{x}_j = 1\) tənliyini cüt-cüt təpələr üçün yazaq:

\[\overline{\alpha}_{AB} \lor \overline{a} \lor \overline{b} = \overline{1} \lor \overline{a} \lor \overline{b} = \overline{a} \lor \overline{b},\]
\[\overline{\alpha}_{AC} \lor \overline{a} \lor \overline{c} = \overline{1} \lor \overline{a} \lor \overline{c} = \overline{a} \lor \overline{c},\]
\[\overline{\alpha}_{AD} \lor \overline{a} \lor \overline{d} = \overline{1} \lor \overline{a} \lor \overline{d} = \overline{a} \lor \overline{d}.\]

\[\overline{\alpha}_{BA} \lor \overline{b} \lor \overline{a} = \overline{a} \lor \overline{b},\]
\[\overline{\alpha}_{BC} \lor \overline{b} \lor \overline{c} = \overline{1} \lor \overline{b} \lor \overline{c} = \overline{b} \lor \overline{c},\]
\[\overline{\alpha}_{BD} \lor \overline{b} \lor \overline{d} = \overline{0} \lor \overline{b} \lor \overline{d} = 1 \lor \overline{b} \lor \overline{d} = 1.\]
Bu bərabərliklərin sağ tərəfinin konyunsiyalarını (12.3) münasibətində görlə bərəkət və təkrar olanları varsa, onlardan birini yazmaq:

\[\Phi_s = (\overline{a} \vee b)(\overline{a} \vee c)(\overline{a} \vee \overline{d})(\overline{b} \vee \overline{c})(\overline{c} \vee \overline{d}) = 1, \]
\[\Phi_s = (\overline{a} \vee \overline{a} \overline{c} \vee \overline{a} \overline{b} \vee \overline{b} \overline{c})(\overline{a} \vee \overline{d})(\overline{c} \vee \overline{c} \overline{d} \vee \overline{c} \overline{b} \vee \overline{b} \overline{d}) = 1, \]
\[\Phi_s = (\overline{a} \vee \overline{b} \overline{c})(\overline{a} \vee \overline{d})(\overline{c} \vee \overline{b} \overline{d}) = 1, \]
\[\Phi_s = (\overline{a} \vee \overline{a} \overline{d} \vee \overline{a} \overline{b} \overline{c} \vee \overline{b} \overline{c} \overline{d})(\overline{c} \vee \overline{b} \overline{d}) = 1, \]
\[\Phi_s = (\overline{a} \vee \overline{b} \overline{c} \overline{d})(\overline{c} \vee \overline{b} \overline{d}) = 1, \]
\[\Phi_s = \overline{a} \overline{c} \vee \overline{a} \overline{b} \overline{d} \vee \overline{b} \overline{c} \overline{d} \vee \overline{b} \overline{c} \overline{d} = 1, \]
\[\Phi_s = \overline{a} \overline{c} \vee \overline{a} \overline{b} \overline{d} \vee \overline{b} \overline{c} \overline{d} = 1. \]

Alınan bu dizyunktiv ifadədə üç dizyunktiv hədd istərak edir: \(\overline{a} \overline{c} \), \(\overline{a} \overline{b} \overline{d} \) və \(\overline{b} \overline{c} \overline{d} \). Birincidə \(B,D \) təpələrinə uyğun \(b,d \) – məntiqi dəyişənlərinin inkarlarını istərak etmir, deməli, asılı olmayan buna uyğun təpələr çoxluğu \(S_1 = \{ B,D \} \) -dir. İkinci həddə \(C \)-yə uyğun məntiqi dəyişən \(\overline{c} \) istərak etmir, ikinci çoxluq \(S_2 = \{ C \} \), üçüncü həddə uyğun təpələr çoxluğu \(S_3 = \{ A \} \) -dir. \(S_1 = \{ B,D \} \), \(S_2 = \{ C \} \), \(S_3 = \{ A \} \) altçoxluqların
\[S_i \cap FS_i = \emptyset \] şərtini ödəməsini yoxlamaq olar. Deməli,
\[\alpha(G) = \max |S_i| = |S_i| = 2. \]

12.2. Qrafın üstünlük təskil edən (dominant) təpələr çoxluğu. Qrafin xarici dayanıqlıq ədədi

Tutaq ki, \(G = (X, F) \) qraf verilir və \(T \subset X \) təpələrin müəyyən altçoxluğu dəyər
\[(\forall x_i \in T) \quad T \cap Fx_i \neq \emptyset \quad (12.4) \]
şərtini ödənilərsə, yəni \(\forall x_j \in X - T \) təpəsi \(T \) çoxluğundan olan heç olmazsa bir təpə ilə qoşulursa (til ilə birləşərsə), onda təpələrin \(T \) altçoxluğu üstünlük təskil edən (dominant) təpələr və ya xarici dayanıq təpələrin çoxluğu adlanır. (12.4) şərtini belə də vermək olar:

\[(\forall x_i \in T) \quad (\{x_i\} \cup Fx_i) \cap T \neq \emptyset \quad (12.5) \]

Əgər xarici dayanıq \(T \) təpələr çoxluğunun hər hansı \(T_1 \subset T \) altçoxluğu xarici dayanıq deyildirsə, onda \(T \) minimal adlanır. Əgər \(\theta = \{T_1, T_2, \ldots, T_k\} \) xarici dayanıq təpələrin ailsədirəsə, onda
\[\beta(G) = \min_{T_i \subset \theta} |T_i| \]
ədədi \(G \) qrafının xarici dayanıq ədədi deyilir.

Qeyd edək ki, qrafın bir neçə minimal xarici dayanıq təpələr çoxluğu ola bilər. Belə altçoxluqları da Maqu üsulu ilə tapmaq olar.

Maqu üsulu.
(12.4) şərtindən alınır ki, \(x_i \in T \) -dirə, onda \(T \)-yə
\(x_i\) ilə qonşu olan əpədcə, yəni \(Fx_i\) çoxluğundan olan əpədcə \(T\)-ya daxildir. Bu isə belə bir mühakimədir:

\[
(\forall x_i \in T) \ (x_i \in T \ \& \ \exists x_j (x_i \in T \ \& \ x_j \in Fx_i)).
\]

Bu isə o deməkdər ki, əgər \(x_i \in T\), onda \(x_i = 1\) və \(\alpha_{ij} = 1\) hesab etmək lazımdır

\[
\Lambda_i (x_i \lor \lor_{j} \alpha_{ij} x_j) = 1. \quad (12.6)
\]

Sadəleşdirilmiş apardığdan sonra

\[
\forall x_i (x_i \lor \lor_{j} \alpha_{ij} x_j) = \lor_{j} \alpha_{ij} x_j, \quad (12.7)
\]
onda

\[
\Phi_T = \Lambda_{i} \lor_{j} \alpha_{ij} x_j = 1. \quad (12.8)
\]

(12.7) ifadəsində sadəleşmə zamanı udulma \(a \lor ab = a\) və idempotentlik \(a \lor a = a\), \(a \cdot a = a\) qanunlarından istifadə etmək lazımdır. Nəticədə alınan məntiqi toplanan hədələrdə inkarsız əştrək edən məntiqi \(x_i\) dəyişənlərinin uyğun təpələr çoxluğunu xarici dayan içərə təpələrin altçıxələqləridir.

Misal 12.3. Təpələrin qonşuluq matrisi ilə verilmiş G qrafının təpələrinin xarici dayan içərə altçıxələqlərinini tapın.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hər bir \(x_i \) tərəfəsi üçün (12.7) münasibətini yazqa:

\[
\begin{align*}
\alpha_{AA} \cdot a \lor \alpha_{AB} \cdot b \lor \alpha_{AC} \cdot c \lor \alpha_{AD} \cdot d \lor \alpha_{AE} \cdot e = \\
= a \lor b \lor 0 \cdot c \lor d \lor e = a \lor b \lor d \lor e,
\end{align*}
\]

\[
\begin{align*}
\alpha_{BA} \cdot a \lor \alpha_{BB} \cdot b \lor \alpha_{BC} \cdot c \lor \alpha_{BD} \cdot d \lor \alpha_{BE} \cdot e = \\
= a \lor b \lor c \lor d,
\end{align*}
\]

\[
\begin{align*}
\alpha_{CA} \cdot a \lor \alpha_{CB} \cdot b \lor \alpha_{CC} \cdot c \lor \alpha_{CD} \cdot d \lor \alpha_{CE} \cdot e = \\
= 0 \cdot a \lor 0 \cdot b \lor c \lor 0 \cdot d \lor 0 \cdot e = c,
\end{align*}
\]

\[
\begin{align*}
\alpha_{DA} \cdot a \lor \alpha_{DB} \cdot b \lor \alpha_{DC} \cdot c \lor \alpha_{DD} \cdot d \lor \alpha_{DE} \cdot e = d \lor e,
\end{align*}
\]

\[
\begin{align*}
\alpha_{EA} \cdot a \lor \alpha_{EB} \cdot b \lor \alpha_{EC} \cdot c \lor \alpha_{ED} \cdot d \lor \alpha_{EE} \cdot e = b \lor e.
\end{align*}
\]

(12.8)-ə görə sağ tərəflərin konyunksiyalarını götümək lazımdır:

\[
\Phi_T = (a \lor b \lor d \lor e) \cdot (a \lor b \lor c \lor d) \cdot c \cdot (d \lor e) \cdot (b \lor e) = 1.
\]

Mötərəzələrə vurub açaq:

\[
\begin{align*}
\Phi_T &= (a \lor ab \lor ac \lor ad \lor ab \lor bc \lor bd \lor ad \lor bd \lor \\
&\lor cd \lor d \lor ac \lor bc \lor ce \lor de) \cdot c \cdot (e \lor ed \lor bd \lor be) = 1
\end{align*}
\]

\[
\Phi_T = (a \lor b \lor d \lor ce) \cdot c \cdot (e \lor bd) = 1
\]

\[
\Phi_T = \underbrace{aec \lor abdc \lor bce \lor bcd} \lor \underbrace{dec \lor bdc \lor ce \lor bcde} = 1
\]

\[
\Phi_T = ec \lor bcd = 1
\]

Deməli, \(T_1 = \{E, C\}, \ T_2 = \{B, C, D\} \) altçoxluqları xarici dayanıq altçoxluqlarındır. Bunlar üçün (12.4) şərti ödənilir:

\[
\beta(G) = \min |T_i| = |T_1| = 2.
\]
12.3. Qrafın nüvəsi və onun xassələrini
tutaq ki, \(G = (X, F) \) qraf verilir və \(N \subseteq X \) müəyyən altçoxluqdur.

Tərif 12.1. Əgər \(G \) qrafının təpələrinin müəyyən altçoxluğu olan \(N \) eyni zamanda həm daxili, həm də xarici dayanıqdirsə, yəni eyni zamanda
\[
(\forall x_i \in N) \quad N \cap Fx_i = \emptyset \quad (12.9)
\]
\[
(\forall x_i \notin N) \quad N \cap Fx_i \neq \emptyset \quad (12.10)
\]
şərtləri \(N \) üçün özlənilirə, onda təpələrin \(N \) altçoxluğu \(G \) qrafının nüvəsi adlanır.

(12.9) və (12.10) şərtlərindən alınır ki, hər bir asılımsız təpə, yəni \(Fx_i = \emptyset \) olan \(x_i \) təpəsi nüvəyə daxildir və \(N - nüvə çoxluğunda ilək olə bilməz, eləcə də \(\emptyset \) çoxluğunu nüvə dəyildir.

Eyni bir əlaqəli qrafın bir neçə nüvəsi ola bilər.

Nüvənin tapılması alqoritmi

Addım 1. İləksiz əlaqəli \(G \) qrafında asılı olmayan təpələrin \(S_1, S_2, \ldots, S_k \) çoxluqlarını Maqu üsulu ilə tapmaq üçün \(\Phi_S = 1 \) münasibətini təyin etməli.

Addım 2. Üstünlük təşkil edən (dominant) təpələrin \(T_1, T_2, \ldots, T_\ell \) çoxluqlarını Maqu üsulu ilə təyin edən \(\Phi_T = 1 \) münasibətini tapmaq unə bilməz, eləcə də \(\emptyset \) çoxluğunu nüvə dəyildir.

Addım 3. \(\Phi_N = \Phi_S \cdot \Phi_T = 1 \) götürməli və sadəəşdirilməli.

Addım 4. \(\Phi_N = 1 \) münasibətində hər bir dizyunktiv həddə inkarsız istirak edən məntiqi hərflərə uyğun təpələr çoxluğu \(N_i \) nüvələrini verir.

161
Misal 12.4. Təpələrin qonşuluq matrisi ilə verilmiş G qrafının nüvələrini Maqu üsulu ilə tapın.

\[
\begin{array}{cccc}
A & B & C & D \\
\hline
A & & 1 \\
B & 1 & & 1 \\
C & & & \\
D & 1 & 1 & \\
\end{array}
\]

1) $\Phi_S = 1$ tənliyini aləq:
\[
\begin{align*}
\overline{\alpha}_{AC} \lor \overline{a} \lor \overline{c} &= \overline{a} \lor \overline{c}, \\
\overline{\alpha}_{BA} \lor \overline{b} \lor \overline{a} &= \overline{a} \lor \overline{b}, \\
\overline{\alpha}_{BD} \lor \overline{b} \lor \overline{d} &= \overline{b} \lor \overline{d}, \\
\overline{\alpha}_{DA} \lor \overline{d} \lor \overline{a} &= \overline{a} \lor \overline{d}, \\
\overline{\alpha}_{DB} \lor \overline{d} \lor \overline{b} &= \overline{b} \lor \overline{d}.
\end{align*}
\]

Deməli,
\[
\begin{align*}
\Phi_S &= (\overline{a} \lor \overline{c})(\overline{a} \lor \overline{b})(\overline{a} \lor \overline{d})(\overline{b} \lor \overline{d}) = 1 \\
\Phi_S &= (\overline{a} \lor \overline{b} \overline{c})(\overline{d} \lor \overline{a} \overline{b}) = 1 \\
\Phi_S &= \overline{a} \overline{d} \lor \overline{a} \overline{b} \lor \overline{c} \overline{d} \lor \overline{a} \overline{b} \overline{c} = 1 \\
\Phi_S &= \overline{a} \overline{d} \lor \overline{a} \overline{b} \lor \overline{b} \overline{c} \overline{d} = 1
\end{align*}
\]

2) $\Phi_T = 1$ tənliyini aləq:
\[
\begin{align*}
\alpha_{AA} \cdot a \lor \alpha_{AC} \cdot c &= a \lor c \\
\alpha_{BB} \cdot b \lor \alpha_{BA} \cdot a \lor \alpha_{BD} \cdot d &= a \lor b \lor d \\
\alpha_{CC} \cdot c &= c \\
\alpha_{DA} \cdot a \lor \alpha_{DB} \cdot b \lor \alpha_{DD} \cdot d &= a \lor b \lor d
\end{align*}
\]
Deməli,
\[\Phi_T = (a \lor c) \cdot (a \lor b \lor d) \cdot c = 1 \]
\[\Phi_T = (a \lor ab \lor ad \lor ac \lor bc \lor dc) \cdot c = 1 \]
\[\Phi_T = (a \lor bc \lor dc) \cdot c = 1 \]
\[\Phi_T = ac \lor bc \lor dc = 1 \]
3) \[\Phi_N = \Phi_S \cdot \Phi_T = 1 \] tənliyini yazmaq:
\[\Phi_N = (\overline{a}d \lor \overline{a}b \lor \overline{b}c \overline{d}) \cdot (ac \lor bc \lor dc) = 1 \]
\[\Phi_N = \overline{a}d \cdot ac \lor \overline{a}d \cdot bc \lor \overline{a}d \cdot dc \lor \overline{a}b \cdot ac \lor \overline{a}b \cdot bc \lor \overline{a}b \cdot dc \overline{b}c \overline{d} \cdot ac \lor \overline{b}c \overline{d} \cdot bc \lor \overline{b}c \overline{d} \cdot dc = 1 \]
Altından xett çəkilən həddər sifrə bərabərdir, çünki
\[z \cdot \overline{z} = 0 \]
\[\Phi_N = \overline{a}b \overline{d}c \lor \overline{a}b \overline{d}c = 1 \]
Beləliklə, \(N_1 = \{B, C\}, \quad N_2 = \{D, C\} \) çoxluqları nüvələrdir, burada \(C \) – asılımsız təpədir, çünki qrafə görə \(FC = \emptyset \). Hər iki nüvə üçün (12.9) və (12.10) şərtlərini yoxlamaq kifayət edir.

Qrafın nüvəsinin bir sira xassələrini var. Bunlardan bir nəçəsini verək.

Xassə 1. Qrafın nüvəsi onun asılı olmayan (daxili dayanıq) təpələrinin maksimal altçoxluğudur.

Xassə 2. İlgəksiz simmetrik qrafın istənilən daxili dayanıq təpələrinin altçoxluğunu onun nüvəsidir.

Xassə 3. İlgəksiz \(G = (X, F) \) qrafının daxili dayanıqlıq \(\alpha(G) \) ədədinin, xarici dayanıqlıq \(\beta(G) \) ədədinin və nüvəsinin \(|N| \) gücü arasındadır.
\[\beta(G) \leq |N| \leq \alpha(G) \]
münasibəti doğrudur.

Xəsəs 4. G qrafının \(N \) nüvəsi üzərində belə bir funksiya təyin edək:

\[
Q(N, x_j) = \begin{cases}
1, & x_j \in N, \\
0, & x_j \notin N, \quad \text{burada } Q(N, \emptyset) = 0
\end{cases}
\]

\(N \subseteq X \) altçoxluğunun \(G = (X, F) \) qrafının nüvəsi olması üçün zəruri və kafi şərt

\[Q(N, x_j) = 1 - \max_{x_i \in Fx_j} Q(N, x_i) \]

olmasıdır.

Xəsəs 5. Kontursuz ələqəli qrafın həmişə nüvəsi var.

Xəsəs 6 (Ričardson). Tək uzunluqlu konturu olmayan ələqəli qrafın nüvəsi var.

Çalıșmalar 12

12.1. Təpələrin qonşuluq matrisi ilə verilmiş \(G \) qrafının asılı olmayan (daxili dayanıqlı), üstünlik (dominant) təşkil edən (xarici dayanıqlı) təpələr çoxluğunu Maqu üsulu ilə tapın. \(\alpha(G) \) və \(\beta(G) \) ədədlərini təyin edin.

<table>
<thead>
<tr>
<th>1)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| 2) | A | B | C | D |
|----|----|----|----|
| A | 1 | 1 | 1 | |
| B | 1 | 1 | 1 | |
| C | | 1 | 1 | |
| D | | 1 | 1 | |</p>
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>13)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
12.2. \(G \) qrafının nüvələrini Maqu üsulu təyin edin.

1) [Diagram A]
2) [Diagram B]
3) [Diagram C]
4) [Diagram D]
5) [Diagram E]
6) [Diagram F]
7) [Diagram G]
8) [Diagram H]
9) [Diagram I]
10) [Diagram J]
11) [Diagram K]
12) [Diagram L]
Göstəriş. İstiqamətlənməmiş qrafı da təpələrin qonşuluq matrisini şəklinə yazma və Maqu üsulunu tətbiq etməli. Məsələn, 16)-ni qonşuluq matrisi ilə belə yazmaq olar:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Boş xanalar tillərin olmaması deməkdir. Belə xanalara 0-lar da yazmaq olar.
13. Qrafların rənglənməsi. Qrafın xromatik ədədi

Tutaq ki, \(G=(X,U) \) istiqamətənəməmiş qrafdır. Belə qrafın qonşu təpələrini müxtəlif rənglərə boyamaq mümkin olarsa, onda belə rənglərin minimal \(\gamma(G) \) sayına \(G \) qrafının xromatik ədədi deyilir.

Misal 13.1.

Qrafın \(\gamma(G) \) xromatik ədədini təyin edin.

Rəngləri 0,1,2,3, … işarə edək. Tərəfə görcə tillərin ucları müxtəlif rəngli olmalıdır. Deməli, bu qraf 3-rənglidir, yəni \(\gamma(G) = 3 \).

Misal 13.2. Əgər \(G \) qrafının təpələrinin sayı \(n \)-dirəsə və bu qraf tam qrafdirsə, onda bu o deməkdir ki, bütün təpələr bir-biri ilə qonşudur və onların rəngləri müxtəlif olmalıdır. Bu halda, \(\gamma(G) = n \) olar.
Misal 13.3. İkipaylı qrafın və karkas (ağac) qrafın xromatik ədədi $\gamma(G) = 2$-dir (bixromatikdirlər). Rəngləri 0,1 kimi götürək.

İkipaylı qraf

Karkas (ağac) qraf

13.1. Qrafın xromatik ədədinin Maqu üsulu ilə tapılması

Yuxarında qeyd etdi ki, istiqamətənənməmiş $G=(X,U)$ qrafının asılı olmayan təpələri qonşu olmayan təpələr çoxluğudur və asılı olmayan təpələrin maksimal çoxluğuunu Maqu üsulu ilə tapa bilərik. Belə olduqda G qrafının asılı olmayan təpələrinin Maqu üsulu ilə tapılmasından istifadə edərk onun xromatik ədədinin təyini üçün aşağıdakı alqoritmi vermək olar.

Addım 1. İstiqamətənənməmiş G qrafını təpələrin qonşuluq matrisi şəklində verəlim və bu cədvəlin köməyi ilə $\Phi_S = 1$ tənliyini qurmalı.

Addım 2. $\Phi_S = 1$ tənliyinin dizyunktiv hədələrin ardıcıl olaraq nömrələyib belə yazmalı:

$$\Phi_S = \Phi_1 \lor \Phi_2 \lor \ldots \lor \Phi_m = 1,$$

burada Φ_i-lərdə x_i-təpələrinə uyğun məntiqi x_i dəyişənlərindən bəzilərinin inkarlarının konyunksiyaları istirak edir.
Addım 3. Φ_i- dizyunktiv hədələrdə inkarları ətirək etməyən x_j-ların hər hansı Φ_j-lara daxil olmadığını müəyyənələşdirəməli və belə Φ_j-lər yeni məntiqi dəyişən y_j-larla işarə edib onların dizyunksiyalarını götərməli.

Addım 4. Addım 3-də alınan dəyişən y_j dəyişən-lörlərinin uyğun dizyunksiyalarının konyunksiyalarını:

$$\psi = \Lambda \bigvee_{j} y_j = 1$$

yazmamız və mətərizələrini vurub açmağı. Alınan ifadədə sadələşdirəmə aparmalı.

Addım 5. Addım 4-də alınan $\psi = 1$ tənliyinin hədələrini nömrələyəbələrə yazmamız:

$$\psi = \psi_1 \lor \psi_2 \lor \ldots \lor \psi_k = 1.$$

Addım 6. Addım 5-də alınan $\psi = \psi_1 \lor \psi_2 \lor \ldots \lor \psi_k = 1$ tənliyinin hədələri əsasinda

$$\gamma(G) = \min_{i=1,2,\ldots,k} |\psi_i|$$
tapmalı.

Misal 13.4. G qrafının Maqu üsulu ilə xromatik $\gamma(G)$ ədədini tapın.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

$\Phi_S = 1$ tənliyini quraq.
Addım 1. \(\Phi_S = (\overline{a} \vee b)(\overline{a} \vee d)(\overline{b} \vee \overline{a})(\overline{b} \vee \overline{c}) \land \\
\land (\overline{c} \vee \overline{b})(\overline{c} \vee \overline{e})(\overline{a} \vee \overline{d})(\overline{e} \vee \overline{c}) = 1 \)
\[
\Phi_S = (\overline{a} \vee b)(\overline{a} \vee d)(\overline{b} \vee \overline{c})(\overline{c} \vee \overline{e}) = 1
\]
\[
\Phi_S = (\overline{a} \vee \overline{b} d)(\overline{b} \vee \overline{c} e)(\overline{c} \vee \overline{d} \overline{e}) = 1
\]
\[
\Phi_S = (\overline{a} \vee \overline{b} d)(\overline{c} \vee \overline{b} \overline{e}) = 1.
\]
Addım 2. \(\Phi_S = \frac{\overline{a} \overline{c} \vee \overline{a} \overline{b} \overline{e} \vee \overline{b} \overline{d} \overline{c} \vee \overline{b} \overline{d} \overline{e} = 1}{\Phi_1 \Phi_2 \Phi_3 \Phi_4} \)
\[
\Phi_S = \Phi_1 \lor \Phi_2 \lor \Phi_3 \lor \Phi_4 = 1
\]
Addım 3.
\[
\Phi_1 = \overline{a} \overline{c}, \quad a \notin \Phi_3, \Phi_4 \Rightarrow \overline{a} \text{-ya uygun: } y_3 \lor y_4
\]
\[
\Phi_2 = \overline{a} \overline{b} \overline{e}, \quad \overline{b} \notin \Phi_1 \Rightarrow \overline{b} \text{-yə uygun: } y_1
\]
\[
\Phi_3 = \overline{b} \overline{d} \overline{c}, \quad \overline{c} \notin \Phi_2, \Phi_4 \Rightarrow \overline{c} \text{-yə uygun: } y_2 \lor y_4
\]
\[
\Phi_4 = \overline{b} \overline{d} \overline{e}, \quad \overline{d} \notin \Phi_1, \Phi_2 \Rightarrow \overline{d} \text{-yə uygun: } y_1 \lor y_2
\]
Addım 4.
\[
\psi = (y_3 \lor y_4) y_1 (y_2 \lor y_4) (y_1 \lor y_2) = 1
\]
\[
\psi = (y_1 y_3 \lor y_1 y_4) (y_1 y_2 \lor y_2 \lor y_1 y_4 \lor y_2 y_4) = 1
\]
\[
\psi = (y_1 y_3 \lor y_1 y_4) (y_2 \lor y_1 y_4) = 1
\]
\[
\psi = y_1 y_3 \lor y_1 y_4 \lor y_1 y_3 y_4 \lor y_1 y_2 y_4 \lor y_1 y_4 = 1
\]
\[
\psi = y_1 y_2 y_3 \lor y_1 y_4 = 1.
\]
Addım 5. \(\psi = \frac{y_1 y_2 y_3 \lor y_1 y_4 = 1}{\psi_1 \psi_2} \)
\[
\psi = \psi_1 \lor \psi_2 = 1.
\]
Addım 6. \(\gamma(G) = \min_{i=1,2} |\psi_i| = |\psi_1| = |\psi_2| = 2 \)
Deməli, G qrafını iki rənglə boyamaq olar, yəni rənglərin nömrələri 0 və 1 olarsa, alınır:

Qrafın xromatik $\gamma(G)$ ədədi haqqında bir sıratəkliflər var.

Teorem 13.1 (König). Əlaqəli istiqamətlənmiş G qrafının bixromatik (iki rəngli) olması üçün zəruri və kafi şərt bu qrafda tək uzunluqlu təşkilin olmamasıdır.

Teorem 13.2. Tutaq ki, G qrafında iləqə yoxdur və heç olmazsa bir til var. Onda aşağıdakı şərtlər eyni müəllidir:

1. G – bixromatik qrafdır;
2. G – ikipaylı qrafdır;
3. G qrafında tək uzunluqlu təşkil yoxdur.

Nəticə. Əgər G – meşə qrafırsa, yəni hər bir əlaqəli komponenti ağac qrafırsa, onda onun xromatik ədədi üçün $\gamma(G) \leq 2$ doğrudur.

Teorem 13.3. İlgəksiz istənilən istiqamətlənmiş G qrafının xromatik $\gamma(G)$ ədədi üçün

$$\gamma(G) \leq \deg(G) + 1$$

doğrudur, burada $\deg(G)$ – qrafın təpələrinin maksimal dərəcəsindir (valentliyidir).

Teorem 13.4. İlgəksiz istiqamətlənmiş $G = (X, U)$ qrafında

$$\alpha(G) \cdot \gamma(G) \geq |X|$$

dogrudur, burada $\alpha(G)$ – qrafın daxili dayanıqlıq ədədidir, $|X|$ isə qrafın təpələrinin saydır.
13.2. Qrafın ardıcıl rənglənməsi alqoritmi

Bu alqoritm çoxpaylı tam qrafların boyanması üçün əhəmiyyətlidir.

Ardıcıl rənglənmə alqoritmi iki qaydadan ibarətdir:

1. G qrafının ixtiyarı x təpəsində 1 nömrəli rəng verilir;

2. Əgər $x_1, x_2, ..., x_k$ təpələrini q sayda müxtəlif rənglərlə boyanmışsa, onda yeni götərülən x_{k+1} təpəsində ondan vəvvəlləki təpələrin boyanmasında istifadə olunan rənglərin sayından ən kiçik sayıdə rəng verilir və s.

Misal 13.5. $G = (X, U) = (X, F)$

\[
Fx_7 = \{x_2, x_4\}, \quad Fx_2 = \{x_7, x_3, x_1\},
\]
\[
Fx_1 = \{x_2, x_6\}, \quad Fx_3 = \{x_2, x_4\},
\]
\[
Fx_4 = \{x_3, x_5\}, \quad Fx_5 = \{x_4, x_6\},
\]
\[
Fx_6 = \{x_1, x_5\}.
\]

Qonşu təpələr müxtəlif rəngli olmalıdır. x_7-nin rəngi 0 olsun, x_2 və x_4 - rəngi 1 olsun, x_3-ün rəngi 0 olsun, x_6-nin rəngi 1 olsun, x_1 və x_5 - rəngi 0 olsun. Deməli, G qrafı bi-xromatik qrafdır. Onu belə də çıxmaq olar (təpələrin rənglərinə görə):
13.3. Qrafın "qruplaşmış" (bir-birindən ciddi asılı) təpələr çoxluğu. Qrafın sıxlığı əpədi

Yuxarında qrafın asılı olmayan təpələr çoxluğu anlayışını verdik və daxili dayanıqlıq $\alpha(G)$qdənin təpələrə gördə G qrafının sıx olmamasını xarakterize etdiyini qeyd etdik. Lakin elə qraflar da var ki, onlar təpələr çoxluğuna göre sıx olan qraflardır, yəni belə təpələr bir-birindən asılı nəziyyətdədirər, başqa sözlə, belə təpələrin ıxtiyari ikişə həmişə qonşu olaraq qalır. Bu cür təpələri "qruplaşmış" təpələr adlandırırlar. Məsələn, oyunlar nəzarətiyəsində, müxtəlif sosioloji məsələlərdə (müxtəlif məqsədli ıtıfaq, birleşmə və s. bağlılıq) informasiya axtarışı və i.a. rast gələn qraflarda təpələrin belə qruplarının təyin etmək zərurəti yaranır.

Tutaq ki, $G=(X,F)$ – ilgəxsiz simmetrik qrafdır və $G_i=(X,U_i)$ qraf G qrafına uyğun istiqamətlənməmiş qraf olsun. $G=(X,F)$ qrafını tamamlayan qrafı $\overline{G}=(X,\overline{U})$ kimi işarə edək və $G_i=(X,U_i)$ qrafını tamamlayan qraf isə $\overline{G}_i=(X,\overline{U}_i)$ olsun.

Tərif 13.1. Əgər təpələrinin çoxluğu $X_k \subset X$ olan $G_k=(X_k,F)$ altqrafı tamdırısa, yəni istənilən $\forall x_i, \forall x_j \in X_k$ təpələri üçün $x_j \in Fx_i$ şərti ödənilərsə (onlar qonşudurlarsa), onda G qrafının təpələrinin $X_k \subset X$ altçoxluğuna "qruplaşmış" təpələr (rus dilində "klika" adlanır) çoxluq adlanır.

Tərif 13.2. Əgər "qruplaşmış" $X_k \subset X$ təpələr

176
çoxlugu hər hansı bir $X_k \subset X$ "qruplaşmış" təpələrin məxsusi altçoxlugu deyildirə, onda X_k "qruplaşmış" təpələrin altçoxlugu **maksimal** adlanır. Maksimal "qruplaşmış" təpəler çoxluginin gücənə G **grafının səxliyi** deyilir və $\varphi(G)$ kimi işarə olunur.

Misal 13.6.

![Diagram](image)

$G = (X, U)$

$\overline{G} = (X, \overline{U})$

G-ni tamamlayan qrafdır.

G qrafında $X_4 = \{A, C, D, K\} - "qruplaşmış"$ təpələr çoxlugudur.

İstiqlamətlənməmiş G qrafında "qruplaşmış" təpələrin maksimal altçoxlugunun axtarılması bu qrafın tamamlayıcısı olan $\overline{G} = (X, \overline{U})$ qrafında asılı olmayan, yəni daxili dayanıq olan təpələrin axtarılmasına gətirilir. Başqa sözlə, belə bir təklif doğrudur.

Teorem 13.5. G qrafının təpələrinin hər hansı $X_k \subset X$ altçoxlugunun "qruplaşma" təpələr çoxluğu olması üçün zəruri və kafi şərtlə bu qrafın tamamlayıcı \overline{G} qrafında X_k altçoxlugunun maksimal daxili dayanıq olmasıdır, yəni $\varphi(G) = \alpha(\overline{G})$.

177
Tutaq ki, \(G=(X,U) \) qrafinin təpələrinin qonşuluq matrisi verilir və \(Q=\{Q_1,Q_2,\ldots,Q_k\} \) bu qrafın təpələrinin "qruplaşmış" altçoxluqlarıdır. Onda "qruplaşmış" təpələr matrisi \(\Gamma(G) \)-nin \(\gamma_{ij} \) elementlərini belə təyin edək:

\[
\gamma_{ij} = \begin{cases} 1, & \text{əgər } x_j \in Q_i, \\ 0, & \text{əgər } x_j \notin Q_i. \end{cases}
\]

\(\Gamma(G) \) matrisinin sətirləri \(Q_1,Q_2,\ldots,Q_k \) - "qruplaşmış" təpələrin uyğun çoxluqlarıdır, sütunların adları isə \(G \) qrafının \(x_1,x_2,\ldots,x_k \) təpələridir.

\(\Gamma(G) \) matrisinin hər bir sətirində duran vahidlər çoxluğu onlara uyğun sütunların adları olan "qruplaşmış" \(x_i \) təpələr çoxluqlarını təyin edir. Deməli, \(\Gamma(G) \) matrisini yazmaq üçün "qruplaşmış" təpələrin \(Q_1,Q_2,\ldots,Q_k \) çoxluqları məlum olmalıdır.

"Qruplaşmış" təpələr çoxluqlarının tapılması üçün aşağıdakı alqoritmi vermək olar.

Addım 1. İstiqamətənəməmiş verilən \(G=(X,U) \) qrafını tam qrafə tamamlayan \(\overline{G}=(X,\overline{U}) \) qrafını qurmalı.

Addım 2. Tamamlayıcı \(\overline{G}=(X,\overline{U}) \) qrafını təpələrin qonşuluq matrisi şəklinde (düzbucaqlı cədvəl – şana şəklinde) verməli.

Addım 3. \(\overline{G}=(X,\overline{U}) \) qrafında asılı olmayan təpələr çoxluğunun Maqu üsulu ilə tapmaq üçün \(\Phi_s=1 \)
tənliyini qurmalı.

Addım 4. Addım 3-də alınan \(\Phi_s = 1 \) tənliyinin hədələrində inkarni istirak etməyən dəyişənlərə göre asılı olmayan təpələrin \(Q_1, Q_2, \ldots, Q_k \) çoxluqlarını təyin etməli.

Addım 5. \(Q_1, Q_2, \ldots, Q_k \)-lar ərazisindən maksimal olan, yəni

\[
\varphi(G) = \max_{i=1,2,\ldots,k} |Q_i|
\]

tapmamı.

Addım 6. \(\Gamma(G) \) matrisini yazmalı.

Misal 13.7. \(G \) qrafı verilir. Bu qrafın "qruplaşmış" təpələrin çoxluqlarının tapın və \(\Gamma(G) \) matrisini yazın.

Həlli. \(G \) qrafını tam qrafadan ədək tamamlayan qrafı quraq. Bu qraf \(\overline{G} = (X, \overline{U}) \) olar.

\[
\overline{G} = (X, \overline{U}) \quad \text{qrafının qonşuluq matrisini yazaq:}
\]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>M</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

\[
\overline{G} = (X, \overline{U})
\]
Addım 1. \(G = (X, U) \) qrafının tamamlayıcı \(\overline{G} = (X, \overline{U}) \) qrafını qurduq.

Addım 2. \(\overline{G} = (X, \overline{U}) \) qrafını təpələrən qoşunlunq matrisi şəklində (düzbucaqlı cədvəl şəklində) verdim.

Addım 3. \(\overline{G} = (X, \overline{U}) \) qrafında asılı olmayan təpələr çoxluğunu təyin edən \(\Phi_S = 1 \) tənliyini almaq üçün cüt-cüt qoşun təpələrə uyğun \(\overline{\alpha}_{ij} \lor \overline{x}_i \lor \overline{x}_j \) ifadəsini yazaq:

\[
\overline{\alpha}_{AM} \lor \overline{a} \lor \overline{m} = \overline{1} \lor \overline{a} \lor \overline{m} = 0 \lor \overline{a} \lor \overline{m} = \overline{a} \lor \overline{m} ,
\overline{\alpha}_{AL} \lor \overline{a} \lor \overline{l} = \overline{1} \lor \overline{a} \lor \overline{l} = \overline{a} \lor \overline{l} ,
\overline{\alpha}_{BE} \lor \overline{b} \lor \overline{e} = \overline{b} \lor \overline{e} , \quad \overline{\alpha}_{BL} \lor \overline{b} \lor \overline{l} = \overline{b} \lor \overline{l} ,
\overline{\alpha}_{DM} \lor \overline{d} \lor \overline{m} = \overline{d} \lor \overline{m} , \quad \overline{\alpha}_{MA} \lor \overline{m} \lor \overline{a} = \overline{a} \lor \overline{m} ,
\overline{\alpha}_{CM} \lor \overline{c} \lor \overline{m} = \overline{c} \lor \overline{m} , \quad \overline{\alpha}_{EB} \lor \overline{e} \lor \overline{b} = \overline{e} \lor \overline{b} ,
\overline{\alpha}_{MD} \lor \overline{m} \lor \overline{d} = \overline{m} \lor \overline{d} , \quad \overline{\alpha}_{CL} \lor \overline{c} \lor \overline{l} = \overline{c} \lor \overline{l} ,
\overline{\alpha}_{EL} \lor \overline{e} \lor \overline{l} = \overline{e} \lor \overline{l} , \quad \overline{\alpha}_{ML} \lor \overline{m} \lor \overline{l} = \overline{m} \lor \overline{l} ,
\overline{\alpha}_{LA} \lor \overline{l} \lor \overline{a} = \overline{l} \lor \overline{a} , \quad \overline{\alpha}_{LB} \lor \overline{l} \lor \overline{b} = \overline{l} \lor \overline{b} ,
\overline{\alpha}_{LC} \lor \overline{l} \lor \overline{c} = \overline{l} \lor \overline{c} , \quad \overline{\alpha}_{LE} \lor \overline{l} \lor \overline{e} = \overline{l} \lor \overline{e} ,
\overline{\alpha}_{LM} \lor \overline{l} \lor \overline{m} = \overline{l} \lor \overline{m} .
\]

Alınan bu ifadələrdən tekrar olanı varsa, onlardan birini göturməkələ bu ifadələrin konyunsiyalarını \(\Phi_S \) ilə işara edib 1-ə bərabər göturməli.

\[
\Phi_S = (\overline{a} \lor \overline{m})(\overline{a} \lor \overline{l})(\overline{b} \lor \overline{e})(\overline{b} \lor \overline{l}) \land \\
\land (\overline{c} \lor \overline{m})(\overline{c} \lor \overline{l})(\overline{m} \lor \overline{l})(\overline{m} \lor \overline{d})(\overline{l} \lor \overline{e}) = 1.
\]

\[
\Phi_S = (\overline{a} \lor \overline{m} \overline{l})(\overline{b} \lor \overline{e} \overline{l})(\overline{c} \lor \overline{m} \overline{l})(\overline{m} \lor \overline{l} \overline{d})(\overline{l} \lor \overline{e}) = 1.
\]
\[\Phi_s = (\overline{a} \overline{b} \lor \overline{a} \overline{c} \lor \overline{b} \overline{m} \lor \overline{m} \overline{c} \lor \overline{m} \overline{d} \lor \overline{c} \overline{d} \lor \overline{c} \overline{d} \overline{e}) \land \]
\[\land (\overline{c} \overline{m} \lor \overline{c} \overline{d} \lor \overline{m} \lor \overline{m} \overline{d} \lor \overline{d} \lor \overline{c} \overline{d} \lor \overline{c} \overline{d} \overline{e}) = 1. \]
\[\Phi_s = (\overline{a} \overline{b} \lor \overline{a} \overline{c} \lor \overline{b} \overline{m} \lor \overline{m} \overline{d} \lor \overline{c} \overline{d} \lor \overline{c} \overline{d} \overline{e}) \land \]
\[\land (\overline{c} \overline{m} \lor \overline{c} \overline{d} \lor \overline{m} \lor \overline{m} \overline{d} \lor \overline{d} \lor \overline{c} \overline{d} \lor \overline{c} \overline{d} \overline{e}) = 1. \]
\[\Phi_s = (\overline{a} \overline{b} \lor \overline{a} \overline{c} \lor \overline{b} \overline{m} \lor \overline{m} \overline{e} \lor \overline{c} \overline{d} \lor \overline{c} \overline{d} \overline{e}) \land \]
\[\land (\overline{m} \lor \overline{c} \overline{e} \lor \overline{c} \overline{d} \lor \overline{c} \overline{d} \overline{e}) = 1. \]
\[\Phi_s = (\overline{a} \overline{b} \lor \overline{a} \overline{c} \lor \overline{b} \overline{m} \lor \overline{m} \overline{e} \lor \overline{c} \overline{d} \lor \overline{c} \overline{d} \overline{e}) \land \]
\[\land (\overline{m} \lor \overline{c} \overline{e} \lor \overline{c} \overline{d} \lor \overline{c} \overline{d} \overline{e}) = 1. \]

Addim 4. Addim 3-də alınan \(\Phi_s = 1 \) tənliyinin
1-ci həddində inkarları istirak etməyən məntiqi \(\overline{a}, \overline{c}, \overline{c}, \overline{d} \)
dayışənlərə uyğun tərəflər: \(Q_1 = \{A, E, C, D\} \),
2-ci həddində: \(Q_2 = \{A, B, C, D\} \),
3-cü həddində: \(Q_3 = \{D, L\} \),
4-cü həddində: \(Q_4 = \{M, E\} \),
5-ci həddində: \(Q_5 = \{B, M\} \).

Addim 5. Addim 4-də alınan "qruplaşmış" tərəflərin çoxluqları \(Q_1 = \{A, E, C, D\} \), \(Q_2 = \{A, B, C, D\} \),
\(Q_3 = \{D, L\} \), \(Q_4 = \{M, E\} \), \(Q_5 = \{B, M\} \) əsasında tapı-
riq ki,
\[\alpha(G) = \varphi(G) = \max |Q_i| = |Q_1| = |Q_2| = 4. \]

Addım 6. "Qruplaşmış" təpələr çoxluqlarının \(\Gamma(G) \) matrisini yazəq.

\[
\Gamma(G) = \begin{bmatrix}
Q_1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
Q_2 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
Q_3 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
Q_4 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
Q_5 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

Çalışmalar 13

13.1. \(G \) – ilgəksiz istiqamətənlənməmiş qrafının xromatik ümədini tapın və təpələrin rənglərini nömrələyin.

1)
2)
3)
4)
13.2. G qrafında "qruplaşmış" tərəvət çoxluğunu təyin edin və $\Gamma(G)$ matrisini yazın.

1)

2)

3)

4)

5)

6)
14. Qrafların diferensiallanması

Riyazi analizdən məlumdur ki, törmə anlayışı kəsilməz kəmiyyətlərə aid olub limitə keçən anlayışını təyin olur. Diskret riyaziyyatda kəsilən (diskret dəyişən) kəmiyyətlər öyrənilir. Ona görə də diskret riyaziyyatda "törmə" anlayışını müəyyən bir obyektin (hadisənin) tezliyini (iştirak etmə sayını) mənada başa düşmək olar. Məsələn, tutaq ki, istiqamətlənməmiş ilgəyi olmayan \(G=(X,U) \) əlaqəli qraf verilir və bu qrafda mümkün olan karkaslarda (ağaclarda) bu və ya digər bir tilin isti-rak etməsi sayıl (tezliyi) bizi maraqlandırır.

Məsəl 14.1. \(G \) qrafı və ondan alınan karkaslar (8 karkas) verilir:
Göründüyü kimi, karkaslarda a tili 5 dəfə, b tili 5 dəfə, c tili 4 dəfə və s. istirak edir. Karkaslarda tillərin çut-cüt istirak etməsi də (tezliyi də) rol oynayır. Məsələn, a və b tilləri 8 karkasdan yalnız ikişində birgə istirak edirlər (T_1 və T_2-də) və altısında birgə istirak etmirər.

u_i, u_j tillərinin ayrı-ayrılıqda istirak etdiyi karkasların uyğun saylarını f_i, f_j ilə, onların birlikdə istirak etdikləri karkasların sayını f_{ij} kimi işarə etsək, onda

$$
\frac{f_i - 2f_{ij} + f_j}{2}
$$

ədədi karkasların qurulmasında onların birlikdə istiraklarının qeyri-müəyyənlik dərəcəsini xarakterizə edər.

Belə şartlaşək ki, tədqiq edəyimiz proses (istiqamətənəmiş qrafdan karkasların alınması) müəyyən şərtlər daxilində baş verən S hadisəsdir, şərtlər isə bu və ya digər tilin karkas adlanan qrafə daxil olmasıdır.

Hər bir hadisə bir model təyin edir və bu modelin insidentlik matrisi T-nin elementləri belə təyin olunur:

$$
t_{ij} = \begin{cases}
1, & \text{işətər çoxluğuna j şərti daxildirsə} \\
0, & \text{əks halda}.
\end{cases}
$$

Hadisəyə daxil olan şərtər modelin hərfləridir, hadisənin doğru olduğu şərtər çoxluğunu isə modelin sözləridir.

Hədəsiyədə (sözləyədə) şərtərin (modelin) istirak intensivliyini onların daxil olması tezliyi ilə xarakterizə edəcəyik. Bunun üçün insidentlik matrisi
 olan \(\psi \) modelini xarakterizə edən münasibətlərin tezlik matrisi \(F = (f_{ij})_{m \times n} \) anlayışını verək.

Münasibətlərin \(F = (f_{ij})_{m \times n} \) matrisi kvadrat matris-dır. Bu matrisin hər sətirində (sütununda) duran \(f_{ij} \) ədədləri \(i \)-ci və \(j \)-cu hərflərin daxil olduğu sözərin sayıdır. Ëğər \(i = j \)-dursa, onda \(f_{i} \) - məxsusi tezlikdir, \(i \neq j \) olduqda isə \(i \)-ci və \(j \)-cu hərflərin qarşılıqlı tezliyi \(f_{ij} \) ədədidir. Aydındır ki, \(F = (f_{ij})_{m \times n} \) matrisi simmetrikdir və həmişə \(f_{ij} \geq f_{ji} \). Əlavə, \(T^{tr} \cdot T = F \), burada \(T^{tr} \) - transponirə olunmuş matrisidir.

Tərif. Əlaqəli \(G = (X, U) \) qrafının \(S \) hadisəsinə göx töəmsəsi onun \((x_i, x_j) \) təpələr cütünün \((f_i - f_{ij}) + (f_j - f_{ij}) \) tezliyinin \(S \) hadisəsində onların birgə istirak etməsi \(f_{ij} \) tezliyinə olan nisbətənə, yəni

\[
\frac{(f_i - f_{ij}) + (f_j - f_{ij})}{f_{ij}}
\]

dəqəqində deyilir və

\[
\frac{\partial G}{\partial S}(x_i, x_j) = \frac{f_i - 2f_{ij} + f_j}{f_{ij}}
\]

kimi işarə olunur, burada \((x_i, x_j) \notin U \) olduqda

\[
\frac{\partial G}{\partial S}(x_i, x_j) = 0.
\]
Əlavə, \(x_i = x_j \) olduqda da
\[
\frac{\partial G}{\partial S}(x_i, x_j) = 0.
\]

Aydındır ki, \(x_i \neq x_j \) olduqda \(\frac{\partial G}{\partial S}(x_i, x_j) \) sonludur və sıfırdan fəqəridir və \((x_i, x_j)\) tili üzərində törəmsənin qiymətidir.

Misal 14.2. Misal 14.1-dəki \(G = (X, U) \) qrafının \(S \) hadisəsindən görə törəmesini, \(T \) matrisini, \(F = T \cdot T^\text{tr} \) matrisini təyin edək.

\(G \) qrafından alınan karkasları yenə də \(T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8 \) kimi işarə edək.
\[
T = \begin{bmatrix}
a & b & c & d & e \\
T_1 & 1 & 1 & 0 & 1 & 0 \\
T_2 & 1 & 1 & 0 & 0 & 1 \\
T_3 & 1 & 0 & 1 & 1 & 0 \\
T_4 & 1 & 0 & 1 & 0 & 1 \\
T_5 & 1 & 0 & 0 & 1 & 1 \\
T_6 & 0 & 1 & 1 & 1 & 0 \\
T_7 & 0 & 1 & 1 & 0 & 1 \\
T_8 & 0 & 1 & 0 & 1 & 1 \\
\end{bmatrix}
\]

\[
F = T^\prime \cdot T = \begin{bmatrix}
a & b & c & d & e \\
a & 5 & 2 & 2 & 3 & 3 \\
b & 2 & 5 & 2 & 3 & 3 \\
c & 2 & 2 & 4 & 2 & 2 \\
d & 3 & 3 & 2 & 5 & 2 \\
e & 3 & 3 & 2 & 2 & 5 \\
\end{bmatrix}
\]

\[
F = T^\prime \cdot T \text{ matrisinin elementləri } \frac{\partial G}{\partial S} \text{ törəməsini təyin edir və bu törəmələr təpələri } a,b,c,d,e \text{ olan qrafdır. }
\]

\[
\text{Əgər hər hansı təpə üzərində törəmə sıfırdan fərqlidirsa və sonludursa, onda bu təpənin təpələri qonşudur. } \frac{\partial G}{\partial S} \text{ törəməsini hesablayaq və onun qrafını quraq.}
\]

\[
\frac{\partial G}{\partial S}(a,b) = f_a - 2f_{ab} + f_b = \frac{5 - 2 \cdot 2 + 5}{2} = \frac{6}{2} = 3,
\]
\[\frac{\partial G}{\partial S}(a,c) = \frac{f_a - 2f_{ac} + f_c}{f_{ac}} = \frac{5 - 2 \cdot 2 + 4}{2} = \frac{5}{2} = 2,5, \]
\[\frac{\partial G}{\partial S}(a,d) = \frac{f_a - 2f_{ad} + f_d}{f_{ad}} = \frac{5 - 2 \cdot 3 + 5}{3} = \frac{4}{3}, \]
\[\frac{\partial G}{\partial S}(a,e) = \frac{f_a - 2f_{ae} + f_e}{f_{ae}} = \frac{5 - 2 \cdot 2 + 4}{2} = \frac{5}{2} = 2,5, \]
\[\frac{\partial G}{\partial S}(b,c) = \frac{f_b - 2f_{bc} + f_c}{f_{bc}} = \frac{5 - 2 \cdot 2 + 4}{2} = \frac{5}{2} = 2,5, \]
\[\frac{\partial G}{\partial S}(b,d) = \frac{f_b - 2f_{bd} + f_d}{f_{bd}} = \frac{5 - 2 \cdot 3 + 5}{3} = \frac{4}{3}, \]
\[\frac{\partial G}{\partial S}(b,e) = \frac{f_b - 2f_{be} + f_e}{f_{be}} = \frac{5 - 2 \cdot 3 + 5}{3} = \frac{4}{3}, \]
\[\frac{\partial G}{\partial S}(d,c) = \frac{f_d - 2f_{dc} + f_c}{f_{dc}} = \frac{5 - 2 \cdot 2 + 4}{2} = \frac{5}{2} = 2,5, \]
\[\frac{\partial G}{\partial S}(d,e) = \frac{f_d - 2f_{de} + f_e}{f_{de}} = \frac{5 - 2 \cdot 2 + 5}{2} = 3, \]
\[\frac{\partial G}{\partial S}(e,c) = \frac{f_e - 2f_{ec} + f_c}{f_{ec}} = \frac{5 - 2 \cdot 2 + 4}{2} = \frac{5}{2} = 2,5. \]
Misal 14.3. G qrafında T^* karkasına nəzərən tillərin bazis tsikllərini əmələ gətirməsi S hadisəsi olsun. G qrafının S hadisəsinə nəzərən töəməsinini hesablayın.

Həlli. T^* karkasından görünüyü kimi, ona h, g və b tillərindən hər hansı birini əlavə etsək tsikl yaranıb, bu tillər onun vətərləridir. G qrafında tsikllərin sayıını hesablayaq:

$$m = 7, \quad n = 5, \quad k = 1,$$

$$\nu(G) = m - n + k = 7 - 5 + 1 = 3.$$

Deməli, 3 bazis tsikllər var:

$$C_1 = (a, b, c, d, e), \quad C_2 = (c, d, e, g), \quad C_3 = (c, d, h).$$

S hadisəsi belə bir model təyin edir:

$$T = \begin{bmatrix}
C_1 & C_2 & C_3 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1
\end{bmatrix}$$

Bu modelə münasibətlərin tezlik matrisi F -i quraq.
\[
F = T^{tr} \cdot T =
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0
\end{bmatrix}
\]

\[
G - \text{ninin } S - \text{e göre törəmsəsini hesablayıb təpələrə}
\]

\[
\frac{\partial G}{\partial S}(a,b) = \frac{f_a - 2f_{ab} + f_b}{f_{ab}} = \frac{1 - 2 \cdot 1 + 1}{1} = 0,
\]

\[
\frac{\partial G}{\partial S}(a,c) = \frac{f_a - 2f_{ac} + f_c}{f_{ac}} = \frac{1 - 2 \cdot 1 + 3}{1} = 2,
\]

\[
\frac{\partial G}{\partial S}(a,d) = \frac{f_a - 2f_{ad} + f_d}{f_{ad}} = \frac{1 - 2 \cdot 1 + 3}{1} = 2,
\]

194
\[
\frac{\partial G}{\partial S}(a,e) = \frac{f_a - 2f_{ae} + f_e}{f_{ae}} = \frac{1 - 2 \cdot 1 + 2}{1} = 1,
\]
\[
\frac{\partial G}{\partial S}(a,g) = \frac{f_a - 2f_{ag} + f_g}{f_{ag}} = \frac{1 - 2 \cdot 0 + 1}{0} = \infty,
\]
\[
\frac{\partial G}{\partial S}(a,h) = \frac{f_a - 2f_{ah} + f_h}{f_{ah}} = \frac{1 - 2 \cdot 0 + 1}{0} = \infty.
\]
\[
\frac{\partial G}{\partial S}(b,c) = \frac{f_b - 2f_{bc} + f_c}{f_{bc}} = \frac{1 - 2 \cdot 1 + 3}{1} = 2,
\]
\[
\frac{\partial G}{\partial S}(b,d) = \frac{f_b - 2f_{bd} + f_d}{f_{bd}} = \frac{1 - 2 \cdot 1 + 3}{1} = 2,
\]
\[
\frac{\partial G}{\partial S}(b,e) = \frac{f_b - 2f_{be} + f_e}{f_{be}} = \frac{1 - 2 \cdot 1 + 2}{1} = 1,
\]
\[
\frac{\partial G}{\partial S}(b,g) = \frac{f_b - 2f_{bg} + f_g}{f_{bg}} = \frac{1 - 2 \cdot 0 + 1}{0} = \infty,
\]
\[
\frac{\partial G}{\partial S}(b,h) = \frac{f_b - 2f_{bh} + f_h}{f_{bh}} = \frac{1 - 2 \cdot 0 + 1}{0} = \infty.
\]
\[
\frac{\partial G}{\partial S}(c,d) = \frac{f_c - 2f_{cd} + f_d}{f_{cd}} = \frac{3 - 2 \cdot 3 + 3}{3} = 0 = 0,
\]
\[
\frac{\partial G}{\partial S}(c,e) = \frac{f_c - 2f_{ce} + f_e}{f_{ce}} = \frac{3 - 2 \cdot 2 + 2}{2} = 0.5,
\]
\[
\frac{\partial G}{\partial S}(c,g) = \frac{f_c - 2f_{cg} + f_g}{f_{cg}} = \frac{3 - 2 \cdot 1 + 1}{1} = 2,
\]
\[
\frac{\partial G}{\partial S}(c,h) = \frac{f_c - 2f_{ch} + f_h}{f_{ch}} = \frac{3 - 2 \cdot 1 + 1}{1} = 2.
\]
\[
\frac{\partial G}{\partial S}(d,e) = \frac{f_d - 2f_{de} + f_e}{f_{de}} = \frac{3 - 2 \cdot 2 + 2}{2} = 0.5, \\
\frac{\partial G}{\partial S}(d,g) = \frac{f_d - 2f_{dg} + f_g}{f_{dg}} = \frac{3 - 2 \cdot 1 + 1}{1} = 2, \\
\frac{\partial G}{\partial S}(d,h) = \frac{f_d - 2f_{dh} + f_h}{f_{dh}} = \frac{3 - 2 \cdot 1 + 1}{1} = 2. \\
\frac{\partial G}{\partial S}(e,g) = \frac{f_e - 2f_{eg} + f_g}{f_{eg}} = \frac{2 - 2 \cdot 1 + 1}{1} = 1, \\
\frac{\partial G}{\partial S}(e,h) = \frac{f_e - 2f_{eh} + f_h}{f_{eh}} = \frac{2 - 2 \cdot 0 + 1}{0} = \infty. \\
\frac{\partial G}{\partial S}(g,h) = \frac{f_g - 2f_{gh} + f_h}{f_{gh}} = \frac{2 - 2 \cdot 0 + 1}{0} = \infty.
\]

Alınan bu törəmlərə görə təqəələrə a, b, c, d, e, g, h olan qrafı quraq.

Qeyd.
1) G qrafının S hadisəsinə görə yüksək tərtibli törəməsi belə təyin olunur:
\[
\frac{\partial^k G}{\partial S^k} = \frac{\partial G}{\partial S}\left(\frac{\partial^{k-1} G}{\partial S^{k-1}}\right)
\]
2) G qrafının S_i və S_j hadisələrinə görə qarşıq törməsəsi belə təyin olunur:

$$\frac{\partial^2 G}{\partial S_i \partial S_j} = \frac{\partial}{\partial S_j} \left(\frac{\partial G}{\partial S_i} \right).$$

3) G qrafının S hadisəsindən törməsinin üç a, b, c elementləri üzərində qiyməti belə hesablanır:

$$\frac{\partial G}{\partial S}(a,b,c) =$$

$$= \frac{1}{f_{abc}} \left[f_a + f_b + f_c - 2(f_{ab} + f_{ac} + f_{bc}) - 3f_{abc} \right]$$

a, b, c, d olduğnda $\frac{\partial G}{\partial S}(a,b,c,d)$ belə hesablanır:

$$\frac{\partial G}{\partial S}(a,b,c,d) = \frac{1}{f_{abcd}} \left[f_a + f_b + f_c + f_d - 2(f_{ab} + f_{ac} + f_{ad} + f_{bc} + f_{bd} + f_{cd}) - 3(f_{abc} + f_{abd} + f_{bcd}) - 4f_{abcd} \right]$$

və s.

Çalışmalar 14

G qrafının T^* karkasına görə 1) tilinin tezliyi S olduğnda törməsini tapın; 2) bazis tsiklləri S olduğnda törməsini tapın və onların qraflarını qurun.
15. Müstəvi (planar) qraflar

Əgər istiqamətlənənmiş $G=(X,U)$ qrafını müstəvi üzərində çəkərkən onun tillərini yalnız təpə nöqtələrində kəsişərsə, onda belə qraf **müstəvi (planar)** qraf adlanır. Məsələn, "Üç quyu və üç qonşu" məsələsinin qrafı müstəvi qraf deyildir, yəni q_1, q_2, q_3 qonşularının p_1, p_2, p_3 quyularına aparan yollarından ikisi (onlar qırq-qırq xətlərlə göstərilmişdir) kəsişir.

İnsan ədədi məxsus sahələrində müstəvi qrafların geniş istifadə olunur. Məsələn, müasir istehsalatda mikrosxemlərin hazırlanması texnologiyasında onların qraflarının müstəvi olmasının mühüm məsələdir, çünki hər bir mikrosxem özlüyündə kontakt sahəcikləri (təpələri) və onların əlaqələrini (tilləri) olan müəyyən qrafıdır. Başqa sözlə, yeni sxemi (məsələn, prosessor sxemini) elə fraqmentlər bölmək lazımdır ki, hər bir belə fraqment müstəvi olmaqla saylara minimal olsun.

1930-cu illərdə Polşa riyaziyyatçısı K.Kuratovski "Üç quyu və üç qonşu" məsələsinin müstəvi qraf olmamasını isbat etmişdir.

Məsələn, aşağıdakı qraflar izomorfdur.
Təklif 15.1. Müstəvi qrafın hər bir altqrafı da müstəvi qrafıdır.

Təklif 15.2. Əgər qrafın hər bir əlaqəlilik komponenti müstəvi qrafırsa, onda bu qraf müstəvi qrafıdır.

Tərəf. Müstəvi qrafın müstəvidən ayırıldığı müstəvi hissəsinə bu qrafın üzü deyilir və üzərində f_i-lərə ışarə edək.

G_1:
\[
\begin{array}{c}
\bullet & x_1 & \longrightarrow & \bullet & x_2 \\
\end{array}
\]
f – sonsuzdur

G_2:
\[
\begin{array}{c}
\bullet & x_1 & \overset{f_1}{\longrightarrow} & \bullet & x_2 \overset{f_2}{\longrightarrow} & \bullet & x_1 \\
\end{array}
\]
f_1 – sonludur
f_2 – sonsuzdur

G_3:
\[
\begin{array}{c}
\bullet & x_1 & \overset{f_1}{\longrightarrow} & \bullet & x_2 & \overset{f_2}{\longrightarrow} & \bullet & x_3 \\
\end{array}
\]
f_i, f_2, f_3 – üzərini sonludur
f_4 – üzü sonsuzdur
Qrafın sonsuz (məhdud olmayan) üzünə onun xarici üzü, sonlu (məhdud olan) üzünə onun daxili üzü deyilir.

Teorem 15.1 (Eyler). Əgər əlaqəli G qrafının n – təpəsi, m qədər tili və ℓ qədər üzləri varsa, onda

\[n - m + ℓ = 2 \]
doğrudur.

Notıca 1. Əgər G – müstəvi əlaqəli qrafdırsa, onda

\[m \leq 3n - 6 \]
doğrudur.

Notıca 2. Beş təpəsi olan \(K_5 \) və ikipaylı \(K_{3,k} \) müstəvi qraflar deyildir.

\[K_5 \text{ – tam qrafdir.} \]
\[m = 10, \; n = 5 \text{ və} \]
\[m \leq 3n - 6 \]
şərti ödənilmir, yəni
\[10 \leq 3 \cdot 5 - 6 = 9 \]
10 \leq 9 ziddiyyətdir.

\[K_{3,3} \text{ – tam qraf deyildir.} \]
\[m = 9, \; n = 5 \]
\[m \leq 3n - 6 \text{ şərti ödənilmir:} \]
\[9 \leq 3 \cdot 6 - 6 = 12 , \]
ancaq tillərin sayı 13 olmalı idi.

Teorem 15.2 (Pontryagin-Kuratovski). Əlaqəli G qrafının müstəvi qraf olması üçün zəruri və kafi şərt onun \(K_5 \) və ya \(K_{3,3} \) qrafına homeomorf altqrafının olmasıdır.
Yada salaq ki, əgər G_1 və G_2 qraflarını eyni bir G qrafının tillərini ardıcıl bölünməsi vasitəsilə alınıbsa, onda G_1 və G_2 qrafları homeomorf adlanır. Məsələn,

$$G: \begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{b}
\end{array}
\end{array} \quad G_1: \begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{b}
\end{array}
\end{array} \quad G_2: \begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{b}
\end{array}
\end{array}$$

G_1 və G_2 − homeomorfdurlar.

Teorem 15.2 ilə eyniğeuclü olan belə bir kriterini də vermək olaraq:

Teorem 15.3. İstiqamətlənməmiş G qrafının müstəvi qraf olmasının üçün zəruri və kəfi şərt onun tillərini ilə bağlı təpələrinin ardıcılı olaraq eyniləşdirilməsi nəticəsində alınan altqraflarının K_5 və ya $K_{3,3}$ qraflarına çevrilmişəsidir.

Qeyd. Qrafın müstəvi qraf olmasının xarakterizə edən ədədlər vardır. Belə ədədlərdən biri qrafın təhriklik (planarlıq), digəri isə qrafın qalınlıq ədədidir.

Əgər G qrafını müstəvi qrafə çevirmək üçün onun tillərindən müəyyən ədədənət qrafərini atmaq lazımdır, onda belə atılan tillərin minimal sayına G qrafının təhriklik (planarlıq) ədədi deyilir və $Sk(G)$ kimi işarə olunur. Tam qraf üçün

$$Sk(G) = C_n^2 - 3n + 6 = \frac{n(n-1)}{2!} - 3n + 6, \; n \geq 3,$$

n – təpələrin sayıdı.

Müstəvi olmayan G qrafının müstəvi qraf olan
altqrafların minimal sayına G qrafının qalınlıq ədədi deyilir və $t(G)$ kimi işarə olunur. Məsələn, müştəvi qrafın qalınlığı $t(G) = 1$-dir.

Müştəvi olmayan G qrafının n– tərəfələri, m– tillər olarsa, onda onun qalınlığı $t(G)$ üçün aşağıdakı belə qiymətləndirilmələr var:

$$t(G) \geq \left\lfloor \frac{m}{3n-6} \right\rfloor, \quad t(G) \geq \left\lfloor \frac{m+3n-7}{3n-6} \right\rfloor,$$

Çalışmalar 15

15.1. Aşağıdakı qraflardan hansıları müştəvi qrafdır.

1)

2)

3)

4)

5)

6)
15.2. Aşağıdakı qrafların planarlıq (təhriklik) $Sk(G)$ və qalınlığıq $t(G)$ vədiələrini tapın.

1) Petersen qrafı

2) K_5

3) $K_{3,3}$

4)
16. Şəbəkədə ekstremal axın məsələləri

16.1. Şəbəkə. Şəbəkənin kəsikləri. Şəbəkədə axın

Tutaq ki, \(G = (X, U) \) – istiqamətlənmiş qrafdır və bu qraf üçün aşağıdakı şərtlər ödənilir:

1) \(G \) qrafının təpələri içərisində yalnız bir \(x_0 \) təpəsi var ki, bu təpəyə heç bir til daxil olmur, yəni \(x_0 \in X \) və \(F^{-1}x_0 = \emptyset \). Bu \(x_0 \) təpəsini \(mənba (giriş) \) adlandırıraq.

2) \(G \) qrafının təpələri içərisində yalnız bir \(x_t \) təpəsi var ki, bu \(x_t \) təpəsindən heç bir til çıxmır, yəni \(x_t \in X \) və \(Fx_t = \emptyset \). Bu təpəni \(mənəb (çıxiş) \) adlandırıraq.

3) \(G \) qrafının hər bir \(u \in U \) tilinə mənfi olmayan \(c(u) \) ədədi uyğundur. Bu \(c(u) \geq 0 \) ədədinin \(təəvəl \) ötürüncülük (keçiricilik) qabiliyyəti (tutum) deyilir. Aydındır ki, \(c(u) \geq 0 \) ədədinin müxtəlif şərhərli (fiziki, texniki) ola bilər, yəni onun til boyunca xarakteristikasını müxtəlif ola bilər.

Bu üç şərt daxilində istiqamətlənmiş \(G = (X, U) \) qrafına şəbəkə deyilir, şəbəkənin girişi \((x_0 \text{ təpəsi}) \) və çıxışi \((x_t \text{ təpəsi}) \) təpələrinə onun polyusları da deyirlər. Şəbəkə adlanan sistemin \(U \) tilləri üzərə hər hansı hərəkətində \((x_0 \text{-dan } x_t \text{-yə olan}) \) substansiyasını \(axın \) adlanır, yəni \(U \) tillər çoxluğu üzərində \(x_0 \) təpəsindən \(x_t \) təpəsindən axin xarakterizə edən \(f(u) \) funksiyası təyin etmək olar və bu axin funksiyasını aşağıdakı şərtləri ödəməlidir:

1) Hər bir \(u \in U \) tili üzərə \(f(u) \geq 0 \) olmalıdır;
2) Aralıq (daxili təpələr adlanan) \(x_i \neq x_0, \ x_j \neq x_t \) təpələpə arasında \(f(x_i, x_j) \) axının qiyəmət nə artırır, nə də azalmır (Kirxhofun axının sabitliyi qanunu), yəni

\[
\sum_{u \in U^+_{x_i}} f(u) = \sum_{u \in U^-_{x_i}} f(u)
\]

olmalıdır, burada \(x_i \) təpəsinə daxil olan tillər çoxluğu \(U^+_{x_i} \) kimi, \(x_i \) təpəsindən çıxan tillər çoxluğu isə \(U^-_{x_i} \) kimi işarə olunub.

3) İstənilən \(u \in U \) tili üzrə \(f(u) \) axının qiyəmət (miqdarı) bu tlin təbii ötürmə qəbiliyyəti \(c(u) \)-dan böyük deyildir, yəni \(f(u) \leq c(u) \) olmalıdır.

Qeyd. \(\Delta(u) = c(u) - f(u) \) fərqinə \(u \) tlinin qalıq ötürmə qəbiliyyəti deyilir. Əgər \(f(u) = c(u) \), yəni \(\Delta(u) = 0 \) olarsa, onda \(u \) tili doymuş til adlanır.

Praktiki məsələlərdə şəbhəkənin \(x_0 \) girişindən \(x_t \) çıxışına olan axının en böyük (ən kiçik) qiyəmətlərinin tapmaq zərurət ortaya çıxır. Belə məsələlərin həlli şəbhəkələr nəzəriyyəsinin əsas məsələlərindəndir və əsas anlayışlərinindən biri olan kəsik anlayışı ilə təyin olunur.

Şəbhəkənin kəsiyi. Kəsiyin ötürmə qəbiliyyəti. Tutaq ki, \(G \) — nəqliyyat şəbhəkəsidir, yəni onun giriş və çıxışı arasında müyyən obyektin (ixtiyari təbiətli) tillər boyunca nəqli var. Şəbhəkənin təpələr çoxluğu \(X \)-i kəsişməyən \(X' \) və \(X'' \) altçoxluluqlarına bölək: \(X = X' \cup X'', \ X' \cap X'' = \emptyset \), bu şərtlə ki, şəbhəkənin mənbəyi \(x_0 \) təpəsi \(X' \) çoxluğuna daxil olsun, yəni
x₀ ∈ X', xᵢ çəixon (mənsəbi) isə xᵢ ∈ X'' olsun. Onda X''
təpələr çəxluğuna daxil olan tillər çəxluğuna şəbəkənin
kəsiyi deyilir və Uₓ.X kimi ışarə olunur.

Misal 16.1. $G = (X, U)$ şəbə-
kəsi verilir və onun kəsiyi qəri-
qırıq xətlərə göstərilmüşdür.

$X' = \{x₀, x₂\},$ $X'' = \{x₁, x₃, x₄, x₅\}$
X' - kəsiyinin təpələr çəxluğudur.
Kəsiyinin tillər çəxluğu: $Uₓ.X'' = \{(x₀, x₁), (x₂, x₃), (x₂, x₄)\}$.
Bu tillərin başlanğıçı X' çəxluğuna, sonları isə X''
çəxluğuna daxildir, ona görə də belə tillər çəxluğunu
($X' \rightarrow X''$) kimi ışarə etmək olar:

$$(X' \rightarrow X'') = \{(xᵢ, xⱼ) | xᵢ \in X', xⱼ \in X''\}.$$

G şəbəkəsində onun tillərinin ötürmə qəbəliyyətləri
verildikdə bu şəbəkənin kəsiyinin ötürmə qəbəliyyəti
kəsiyi təşkil edən tillərin ötürmə qəbəliyyətlərinin
cəmine bərabərdir, yəni:

$$c(X' \rightarrow X'') = \sum_{xⱼ \in X'', xᵢ \in X'} c(xᵢ, xⱼ)$$

Ən kiçik ötürmə qəbəliyyəti olan kəsiyə şəbəkənin
minimal kəsiyi deyilir.

Şəbəkədə tillərin ötürmə qəbəliyyəti olan ədərləri u
tili üzərində kiçik mətərizələr içərisində yazaq, tillər
üstə axınların qiymətlərini isə belə mətərizələrin ənved-
lində yazaq.

Misal 16.2. Verilən şəbəkədə kəsiyinin ötürmə
gəbəliyyətini və kəsik üzrə axın qiymətini hesablayın.
Kəsik punktlə verilib.

\[X' = \{x_0, x_2, x_5\} \text{, } X'' = \{x_1, x_3, x_4, x_t\}, \]

\[(X' \rightarrow X'') = \{(x_0, x_1), (x_2, x_3), (x_5, x_4), (x_5, x_t)\} . \]

\[c(X' \rightarrow X'') = c(x_0, x_1) + c(x_2, x_3) + c(x_5, x_4) + \]

\[+ c(x_5, x_t) = 7 + 5 + 4 + 5 = 21 . \]

İndi isə kəsik üzrə faktiki axının qiymətini hesablayaq:

\[f(x_0, x_1) = 3 \text{, } f(x_2, x_3) = 4 \text{, } f(x_5, x_4) = 3 \text{, } f(x_5, x_t) = 3 . \]

Demələ,

\[\sum_{u \in (X' \rightarrow X'')} f(u) = f(x_0, x_1) + f(x_2, x_3) + f(x_5, x_4) + \]

\[+ f(x_5, x_t) = 3 + 4 + 3 + 3 = 13 . \]

Misaldan göründüyü kimi,

\[f(X' \rightarrow X'') < c(X' \rightarrow X'') \Rightarrow 13 < 21 . \]

Bu fəlt istənilən şəbəkə üçün

\[f(X' \rightarrow X'') \leq c(X' \rightarrow X'') \]
münasibətindədir, yəni şəbəkədə istənilən axının qiyməti şəbəkənin istənilən kəsiyinin ötürmə qabiliyyətini aşır.

Şəbəkənin girişi \(x_0 \) ilə çəxisi \(x_t \)-ni birləşdirən yol və ya zəncir boyunca olan axının qiymətini artırmək olar, bu şərtlə ki, onlarda doymuş til olmasın. Başqa sözlə, aşağıdakı təkliflər doğrudur.

Teoremlə. Əgər \(G \) şəbəkəsində \(x_0 \) girişi və \(x_t \) çəxisi birləşdirən hər hansı
\[
\mu = (x_0, x_i, x_{i_2}, \ldots, x_{i_k}, x_t)
\]
yolunda doymuş heç bir til yoxdursa, onda bu yol boyunca \(f(\mu) \) axının qiymətini \(\delta^* = \min\{\Delta u\} \) qədər artırmək olar, burada
\[
\Delta u = \Delta(x_{i_p}, x_{i_m}) = c(x_{i_p}, x_{i_m}) - f(x_{i_p}, x_{i_m}).
\]

Misal 16.3. Misal 16.2-də verilən şəbəkədə
\[
\mu = (x_0, x_1, x_5, x_2, x_3, x_t)
\]
yoluna baxaq.

\[
\begin{align*}
\Delta(x_0, x_1) &= c(x_0, x_1) - f(x_0, x_1) = 7 - 3 = 4, \\
\Delta(x_1, x_5) &= c(x_1, x_5) - f(x_1, x_5) = 4 - 2 = 2, \\
\Delta(x_5, x_2) &= c(x_5, x_2) - f(x_5, x_2) = 7 - 4 = 3, \\
\Delta(x_2, x_3) &= c(x_2, x_3) - f(x_2, x_3) = 5 - 4 = 1, \\
\Delta(x_3, x_t) &= c(x_3, x) - f(x_3, x) = 6 - 4 = 2, \\
\delta^* &= \min\{\Delta u\} = \min\{4,2,3,1,2\} = 1.
\end{align*}
\]
Deməli, \(\mu = (x_0, x_1, x_5, x_2, x_3, x_t) \) yolunda hər bir \(u \) tilinin axınıni \(f(u) + \delta^* \) götürəmək olar və tillərdən biri doymamışdırsa, prosesi davam etdirmək olar. Burada tilin biri doymuş alınır:

\[
\begin{align*}
S &= (x_0, x_i, x_{i2}, \ldots, x_{ik}, x_t) \\
E^* &= \min\{\delta^*, f^*\}
\end{align*}
\]

\(\delta^* = \min\{\Delta(\bar{u})\} \), \(\Delta(\bar{u}) = c(\bar{u}) - f(\bar{u}) \) tapılır, hərəkətin aksının yönəlmiş \(\bar{u} \) tellərinə göə

\[
f^* = \min\{f(\bar{u})\}
\]

tapılır.

Misal 16.4. Misal 16.2-də verilən \(G \) şəbəkəsində

\[
S = (x_0, x_2, x_1, x_5, x_3, x_t)
\]

zənciri boyunca axının qiymətini artırmaq tələb olunur.
\[E^* = \min \{ \delta^*, f^* \} \] edədini tapaq.

\[\Delta(\overrightarrow{x_0, x_2}) = 5 - 3 = 2 \quad f(\overrightarrow{x_2, x_1}) = 2 \]
\[\Delta(\overrightarrow{x_1, x_5}) = 4 - 2 = 2 \quad f(\overrightarrow{x_5, x_3}) = 5 \]
\[\Delta(\overrightarrow{x_2, x_t}) = 6 - 4 = 2 \]

\[\delta^* = \min \{ \Delta(\overrightarrow{x_0, x_2}), \Delta(\overrightarrow{x_1, x_5}), \Delta(\overrightarrow{x_2, x_t}) \} = \min \{ 2, 2, 2 \} = 2 \]
\[f^* = \min \{ f(\overrightarrow{x_2, x_1}), f(\overrightarrow{x_5, x_3}) \} = \min \{ 2, 5 \} = 2 \]

Deməli, \(E^* = \min \{ \delta^*, f^* \} = \min \{ 2, 2 \} = 2 \).

\(S \) – zənciri boyunca axinin \(\bar{u} \) tillərindən göxə qiymətləri \(f(\bar{u}) + E^* \), əks istiqamətlə \(\bar{u} \) tilləri üzrə qiymətləri \(f(\bar{u}) - E^* \) kimi təyin olunur. Buna əsasən \(S \) zəncirindən axinin vəziyyəti belə alınır:

Göründüyü kimi, \((x_0, x_2), (x_1, x_5), (x_3, x_t)\) – tillər doymuş tollərdir.

Əgər zəncirin heç olmasına bir tili doymuşdursa, onda belə zəncir doymuş adlanır və onda olan axın maksimal olur.

Teoremlər 16.3 (Ford-Falkerson). Nəqliyyat şəbəkəsinin onun mənbəyi \(x_0 \)-dan mənsəbi \(x_t \)-dək olan axının maksimal (ən böyük) qiyməti bu şəbəkənin kəsiyinin ötürülən qabiliyyətinin en kiçik (minimal) qiymətine bərabərdir:

\[f_{x_t}^* = \max_{X' \rightarrow X''} \min_{x_0 \in X', x_t \in X''} c(x_i, x_j) \].

212
Qeyd edək ki, bu teoremin isbatı ideyasından şəbəkədə maksimal axının tapılması üçün Ford-Falkerson alqoritmini vermək olar.

16.2. Şəbəkədə maksimal axını qurmaq üçün Ford-Falkerson alqoritmi

Verilən şəbəkədə onun girişi \(x_0 \) və çıxışı \(x_t \) tapələri arasında tillərin ötürmə qabiliyyətləri məlum olduqda qiyməti maksimal olan axının üçün aşağıdakı işləri görmək lazımdır:

1) **Hər hansı axının axtarılmasından**. Şəbəkənin girişi \(x_0 \)-la onun çıxışı \(x_t \) arasında daxili təpələr üçün axının daxilolma – çıxmə balansını saxlayan, yəni

\[
f_{x_0} = \sum_{u \in U^+} f(u) = \sum_{u \in U^-} f(u) = f_{x_t}
\]

şərtini ödəyən hər hansı axın (sifir axın da ola bilər) götərilmək lazımdır.

2) **Dolu axının axtarılmasından**. Əgər şəbəkənin girişi \(x_0 \) təpəsi ilə sonu \(x_t \) təpəsi arasında baxılan axının keçdiyi tillərdən ən azı biri doymuş tədiirsə, onda belə axın dolu adlanır. Axın dolu deyildirsə, onda belə axın yol və ya zincir boyunca dolu vəziyyətənə gətirmək olar.

3) **Maksimal qiymətli axının axtarılmasından**. Dolu axının maksimal axına gətirmək olar.

Bunları bir misalda göstərək.

Misal 16.5. Tutaq ki, şəbəkə onun tillərinin ötürmə qabiliyyətləri matrisi ilə verilir. Şəbəkənin girişi ilə çıxışı arasında maksimal axının qurun və girişi \(x_0 \)
təpəsini çıxışını \(x_t \) təpəsindən ayıran minimal kəsiyi tapın.

\[
\begin{array}{cccccc}
\ hline \\
 & x_0 & x_1 & x_2 & x_3 & x_4 & x_t \\
\ hline \\
x_0 & -12 & -13 & - & - & - & - \\
x_1 & - & -11 & 14 & 15 & - & - \\
x_2 & - & - & - & - & - & 8 \\
x_3 & - & - & - & - & 7 & 15 \\
x_4 & - & - & 8 & - & - & - \\
x_t & - & - & - & - & - & - \\
\ hline
\end{array}
\]

Mərhələ I. Hər tərəfdə axının qiyməti sıfır olan belə bir yola baxaq:

\[
\mu_1 = (x_0, x_1, x_3, x_t)
\]

Bu yol boyunca olan axının qiymətini \(\delta^* \) qədər artırək:

\[
\delta^* = \min \{ c(x_0, x_1), c(x_1, x_3), c(x_3, x_t) \} = \\
= \min \{12, 14, 15\} = 12,
\]
onda \(\mu_1 \) yol üzrə axının tillərdə qiyməti belə alınar:

Deməli, \((x_0, x_1)\) tili doymuş hala gəldi. Bu yolda axını artırmaq olmur. Axının bu qiymətini

\[
\mu_2 = (x_0, x_3, x_t)
\]
yolunda nəzərə alaq.

\[
\delta^* = \min \{13 - 0, 15 - 12\} = \min \{13, 3\} = 3
\]

214
alınır. Göründüyü kimi, \((x_3, x_i)\) tili doymuş til oldu. İndi ise belə bir til götürək:

\[\mu_3 = (x_0, x_3, x_4, x_2, x_i)\]

\[\delta^* = \min \{13 - 3, 7 - 0, 8 - 0, 8 - 0\} = \min \{10, 7, 8, 8\} = 7\]

\(\mu_3\) yolu boyunca axının qiymətini 7 vahid artırmaq olar:

\[(x_3, x_4)\) tili doymuş til oldu.

Şəbəkənin \(x_0\) girişindən \(x_i\) çıxışına aparan yol qalmadı. Lakin

\[S = (x_0, x_3, x_1, x_2, x_i)\]

zənciri var. Bu zəncir boyunca axının qiymətini \(\bar{u}\) istiqamətində \(E^* = \min \{\delta^*, f^*\}\) vahid artırmaq olar, \(\bar{u}\) istiqamətində ise azaltmaq olar.

\[\textbf{Mərhələ II. } S = (x_0, x_3, x_1, x_2, x_i)\]

\[\Delta (\overrightarrow{x_0, x_3}) = 13 - 10 = 3 \quad f(\overrightarrow{x_3, x_i}) = 12\]
\[\Delta (\overrightarrow{x_1, x_2}) = 11 - 0 = 11 \quad f^* = \min \{f(\bar{u})\} = 12\]
\[\Delta (\overrightarrow{x_2, x_i}) = 8 - 7 = 1\]
\[\delta^* = \min \{\Delta(x_0, x_3), \Delta(x_1, x_2), \Delta(x_2, x_4)\} = \min \{3, 11, 1\}\]

\[E^* = \min \{\delta^*, f^*\} = \min \{1, 12\} = 1.\]

Deməli, zəncir boyunca axının qiyməti belə alındı:

\[(x_2, x_i)\) tili doymuş hala gəldi.

Beləliklə, baxılan \(\mu_1, \mu_2, \mu_3\) yolları və \(S\) zənciri üzrə axının qiymətlərini şəbəkədə nəzərə alsaq, şəbəkə belə bir şəkildə düşür:

Göründüyü kimi, doymamış zəncir də yoxdur. Deməli, axın maksimaldır. Kəsiyi təyin edən təpələr çoxluğu \(X'' = \{x_i\}\) və bu çoxluğu daxil olan iki til var: \((x_3, x_i)\) və \((x_2, x_i)\). Bu tələrin ötürmə qabiliyyətləri 15 və 8 olduğundan axının maksimal qiyməti \(15 + 8 = 23\) -dür.

Qeyd. Ford-Falkerson alqoritmini verilən şəbəkədə girişi \(x_0\)-dan başlayaraq onun çıxışı \(x_i\)-dək təpələrin
ardıcıl işarələnməsi vasitəsilə də vermək olar.

Ford-Falkerson alqoritmi

Ford-Falkerson alqoritmi iki mərhələdən ibarətdir. Mərhələ I-də təpələrin işarələnməsi aparılır, Mərhələ II-də axının qiyməti dəyişdirilir.

Mərhələ I.

Təpələrin işarələnməsi. Təpələr ikielementli işarələrlə təmin olunur. Şəbəkənin girişə x_0 əpəsi $(-, \infty)$ işarəsini alır. Tutaq ki, işarələnmış təpələrin müəyyən çoxluğu var. Onlardan ixtiyari biri götürülür və üzərində işarələmək üçün işlər aparılır. (x, ε) işarəli i təpəsində qoşulu təpələrin işarələnməsi aşağıdakı qayda ilə aparılır:

- **Əgər** $i \rightarrow j$ tili varsa və $f(i, j) < c(i, j)$ şərti ödənilərsə, onda j təpəsində $(i^+, \min\{\varepsilon, c(i, j) - f(i, j)\})$ işarəsi verilir.

- **Əgər** $i \leftarrow j$ tili varsa və $f(j, i) > 0$ şərti ödənilərsə, onda j təpəsində $(i^-, \min\{\varepsilon, f(j, i)\})$ işarəsi verilir.

Bu qayda ilə başqa təpələr işarələnir.

Təpələrin işarələnməsi prosesi iki halda qurtarılması hesab olunur:

1) Artıq təpələri işarələmək olmur, lakin çıxış təpəsi işarələnməyib. Onda alqoritmdə dayandırılır.

2) Çıxış təpəsi işarələnib. Onda axın dəyişdirilir.

Mərhələ II.

Axının dəyişdirilməsi. Tutaq ki, çıxış təpəsi (x_0^+, δ) işarəsini alıb. Onda axına δ ədədini əlavə edirik: $f_{mx} + \delta$ və x_m təpəsində keçirik. Ümumi addım: **Əgər** biz
işarəsi \((x_i^+, x)\) olan \(x_j\) təpəsindəyiksə, onda \(f(x_i, x_j)\) axını üzərində \(\delta\) ədədini əlavə edirik və \(x_i\) təpəsində keçirik. Əгər \(x_j\) təpəsinin işarəsi \((x_i^-, x)\)-öçmə, onda \(f(x_i, x_j)\) axınınından \(\delta\) ədədini çıxırıq və \(x_i\) təpəsində keçirik. Qeyd edək ki, hər iki halda daxili təpələrdə axının qiyməti uyğun tillərin ötürmə qəbiliyyətini aşmadır və axının mənfi qiyməti alınmamalıdır. Aralıq \(x_j\) təpəsindən keçid zamanı aşağıdakı dörd hal olara bilər:

I. \[x_i \xrightarrow{f(x_i, x_j)+\delta} x_j \xrightarrow{f(x_j, x_k)+\delta} x_k \]

II. \[x_i \xrightarrow{f(x_i, x_j)+\delta} x_j \xleftarrow{f(x_j, x_k)-\delta} x_k \]

III. \[x_i \xleftarrow{f(x_j, x_k)-\delta} x_j \xleftarrow{f(x_j, x_k)-\delta} x_k \]

IV. \[x_i \xleftarrow{f(x_j, x_k)-\delta} x_j \xrightarrow{f(x_j, x_k)+\delta} x_k \]

Bu dörd halda da şəbəkə daxilində axının balanslıq şərti saxlanılır.

Bir halda ki, axının qiyməti \(\delta \geq 1\) qədər artır və kəsiyin ötürmə qəbiliyyətini aşır, onda sonlu addimlarla alqoritm başa çatır.

Alqoritmi bir misal üzərində gösterək.

Misal 16.6. Şəbəkədə maksimal axini qurun.

Həll. Başlanğıc axin sıfırdır.

Mərhələ I.
Təpələrin işarələnməsi. Şəbəkənin girisi x_0 təpəsinə $(-,\infty)$ işarəsini verək. x_0-la qoşunu təpələr x_1 və x_3-dür.

x_1 üçün

$$c(x_0, x_1) - f(x_0, x_1) = 4 - 0 = 4 > 0$$
olduqandan x_1 təpəsinin işarəsi

$$(x_0^+, \min\{\varepsilon, c(x_0, x_1) - f(x_0, x_1)\}) = (x_0^+, \min\{\varepsilon, 4\}) = (x_0^+, 4)$$
olur.

x_3 üçün

$$c(x_0, x_3) - f(x_0, x_3) = 3 - 0 = 3 > 0$$
ve x_3 təpəsi $(x_0^+, 3)$ işarəsini alır.

İndi isə işarələri olan x_1 və x_3 təpələrinə keçək.

x_1 təpəsinə qoşunu təpələr x_2 və x_4-dür.

x_2 təpəsi üçün

$$c(x_1, x_2) - f(x_1, x_2) = 6 - 0 = 6 > 0$$
ve $(x_1^+, 4)$, burada $4 = \min\{6, 4\}$-dür, işarəsini alır.

x_4 üçün

$$c(x_1, x_4) - f(x_1, x_4) = 5 - 0 = 5 > 0$$
ve $(x_1^+, 4)$ işarəsini alır. İşarələnmiş x_2 və x_4 təpələrinə keçid. Bu təpələrin hər ikisindən x_t təpəsini işarəlamış olar. Məsələn, x_2-ni götürək, onda x_t çıxışı üçün

$$c(x_2, x_t) - f(x_2, x_t) = 5 - 0 = 5 > 0$$
olduqandan onun işarəsi $(x_2^+, 4)$ olaraq, burada $4 = \min\{5, 4\}$.

Alınan işarələnmiş təpələrə olan şəbəkəni çəkək:
Mərhələ II.

Axının dəyişdirilməsi. Çıxışın işarəsi \((x_2^+, 4)\)-dür, ona görə də \(f(x_2, x_i)\) axınıni \(f(x_2, x_i) = 0 + 4\) edirik və \(x_2\) təpəsinə keçirik. Bu təpənin işarəsi \((x_1^+, 4)\)-dür, deməli, \(f(x_1, x_2)\) axınıni \(f(x_1, x_2) = 0\)-dan \(f(x_1, x_2) = 0 + 4 = 4\)-ə dəyişirik. Nəhayət, işarəsi \((x_0^+, 4)\) olan \(x_1\) təpəsi üçün \(f(x_0, x_1) = 0\) axınıni \(f(x_0, x_1) = 0 + 4 = 4\) axını ilə əvvəl edirik. Bütün işarələri silirik. Axının qiymətini 4 aldıq, yəni \(f(x_0, x_1) = 4\) oldu.

Mərhələ I.

Təpələrin işarələnməsi. Aldığ ki, \(x_1\) təpəsi üçün \(f(x_0, x_1) = 4\), deməli, \((x_0, x_1)\) – doymuş til oldu, çünkü \(c(x_0, x_1) = 4, f(x_0, x_1) = 4 \Rightarrow c(x_0, x_1) = f(x_0, x_1)\), yəni bu təpəni yenidən işarələmək olmur.

\(x_0\) təpəsinə yenidən \((-\infty, \infty)\) işarəsini verək və ona qoşuşu olan \(x_3\) təpəsini işarələyək.

\(x_3\) təpəsi üçün

\[c(x_0, x_3) - f(x_0, x_3) = 3 - 0 = 3 > 0\]

olduğundan və \(x_3\) təpəsinə \((x_0^+, 3)\) işarəsini verək.
təpəyə işarəsi olmayan bir qonşu x_2 təpəsi var (x_1 təpəsi qonşu olsa da onu işarələnmək olmur) və
$$c(x_3, x_2) - f(x_3, x_2) = 2 - 0 = 2 > 0,$$
ona göre də x_2 təpəsində $(x^+_3, 2)$ işarəsini verək, burada $2 = \min\{3, 2\}$.

İşarələnmiş olan x_2 təpəsində keçək.

x_2 təpəsi üçün
$$c(x_2, x_t) - f(x_2, x_t) = 5 - 4 = 1 > 0,$$
ona göre də çıxış təpəsində $(x^+_2, 1)$ işarəsini verək, burada $1 = \min\{2, 1\}$.

Beləliklə, təpələrinin işarələri yeni işarələr olan şəbəkə belədir:

Mərhələ II.

Axinin dəyişdirilməsi. x_t-dən işarələri olan təpələr boyunca x_0 təpəsinə hərəkət etməklə təllər üzərə axinin qiymətlərini belə yeniləşdirə bilərik.

$$f(x_2, x_t) = 4 + 1 = 5,$$
$$f(x_3, x_2) = 0 + 1 = 1,$$
$$f(x_0, x_3) = 0 + 1 = 1.$$

Bu təpələrdən işarələri silək. Yeni alınan axinin qiymət"
5-dir. Deməli, \((x_2, x_t) \) tili doymuş til oldu, çünki
\[c(x_2, x_t) = f(x_2, x_t) = 5. \]

Mərhələ I.

Təpələrən işarələnməsi. \(x_0 \) girişine \((-\infty, 0)\) işarəsini verək və \(S = (x_0, x_3, x_2, x_1, x_4) \) zənciri (marşrutu) boynuca təpələrin yeni işarələrini təyin edək.

\(x_3 \) təpəsində \((x_0^+, 2)\), \(x_2 \) təpəsində \((x_3^+, 1)\) işarələrini verək.

\(x_1 \) təpəsində
\[f(x_1, x_2) = 4 > 0 \] oldʊğundan \((x_2^-, 1)\) işarəsini verək, burada \(1 = \min\{4, 1\} \).

\(x_4 \) təpəsində \((x_4^+, 1)\), \(x_t \) təpəsində \((x_t^+, 1)\) işarələrini verək. Yeni alınan şəbəkə belə olər:

\[(x_2^+, 1) \quad 4(6) \quad (x_3^+, 1) \]
\[(x_4^+, 1) \quad 0(1) \quad (x_t^+, 1) \]
\[(-\infty) \quad 4(3) \quad (x_0^+, 2) \]
\[1(3) \quad 0(5) \quad (x_2^-) \]
\[(x_3^-) \quad 0(5) \]

Mərhələ II.

Axinin dəyişdirilməsi. \[f(x_4, x_t) = 0 + 1 = 1, \]

\[f(x_1, x_4) = 0 + 1 = 1, \quad f(x_1, x_2) = 4 - 1 = 3, \]

\[f(x_3, x_2) = 1 + 1 = 2 \quad \text{və} \quad f(x_5, x_3) = 1 + 1 = 2. \]

Beləliklə, axinin qiyməti 6 alınır və şəbəkə belə bir vəziyyətə gətirilir.
Mərhələ I.
Təpələrin işarələnməsi. Giriş x_0 təpəsində $(−, \infty)$ işarəsini, x_0 təpəsində $(x_0^+,1)$ işarəsini vəsrək, onda qalan təpələri işarələmək olmur, çünki təlləri doymamış olan və x_0-dan x_i-dək nə yol, nə de marşrut (zəncir) yoxdur. Şəbəkənin kəsiyini təşkil edən təpələr çoxluğu $X''=\{x_i\}$, təllər çoxluğu ise (x_2,x_i) və (x_4,x_i) təlləridir. Bu təllərin ötürmə qəbiləyyətləri $c(x_2,x_i)=5$, $c(x_4,x_i)=1$ olduğundan $5+1=6$. Maksimal axinin da qiyməti 6-dır.

16.3. Şəbəkədə minimal axinin axtarılması

Tutaq ki, təlləri üzərində müəyyən nəqli olan şəbəkə $G=(X,U)$ verilir və bu şəbəkənin u təlləri üzərində təyin olunan $f(u)$ axını üçün aşağıdakı şərtlər qoyulur:

a) ixtiyari $u \in U$ tilinin ötürmə qəbiləyyəti $c(u)$ mənfi deyildir, yəni $c(u) \geq 0$;

b) giriş x_0 və çıxış x_i təpələrindən fərqli istənilən $x_0 \neq x_i$, $x_0 \neq x_i$ təpəsində $\sum_{u \in U^+} f(u) = \sum_{u \in U^-} f(u)$ ödənilir.
c) istənilən \(u \in U \) tili üzərində axının \(f(u) \) qiyməti bu tilin ötürmə qabiliyyətini \(c(u) \)-dan kiçik deyildir, yəni \(f(u) \geq c(u) \);

Belə nəqliyyat şəbəkəsində minimal qiymətlə axını Ford-Falkerson alqoritmində dəyişiklik aparmaqla tapmaq olur. Başqa sözlə, Ford-Falkerson alqoritmi ilə minimal axını tapmaq üçün alqoritmi belə vermək olar:

1. \(\forall u \in U \) üçün \(f(u) \geq c(u) \) şərtini ödəyən hər hansı axın götürülür.

2. Giriş \(x_0 \) və çıxış \(x_t \) təpələrini birləşdirən hər hansı yol boyunca tillə üzərində axının qiyməti
\[
\delta^* = \min \{\delta(u) = f(u) - c(u)\}
\]
qədər artılır və bu yolun keçdiyi tildən heç olmazsa biri doymuş olduğu belə axın dolu axın olur.

3. Minimal axını dolu axından alıq üçün aşağıdakı qaydalara əməl etmək lazımdır:
 a) Giriş \(x_0 \) təpəsinə \([x_0^+] \) işarəsi verilir.
 b) Daxili hər hansı \(x_i \neq x_t \) təpəsinə işarə verilibsə və \(f(u) > c(u) \) şərtini ödəyən \(u = (x_i, x_j) \) tilinin son təpəsinə \([x_i^+] \) işarəsi verilir; əgər \(\tilde{u} = (x_j, x_i) \) olarsa, onda \(x_j \) təpəsinə \([x_i^-] \) işarəsi verilir.
 c) Əgər b) qaydası ilə çıxış \(x_t \) təpəsi işarələnibsə, onda \(x_0 \) və \(x_t \) təpələrini birləşdirən zəncir boyunca axının qiyməti \(\tilde{u} \) tili üzərə \(f(u) - \delta^* \), eks hərəkət üzərə, yəni \(\tilde{u} \) tili üzərə \(f(\tilde{u}) + \delta^* \) qiymətlərinin alıqqla azalır.

Misal 16.6. Verilən şəbəkədə minimal axını tapın.
\[\mu_1 = (x_0, x_2, x_4, x_t) \] yoluna baxaq:
\[\delta(x_0, x_2) = 21 - 5 = 16, \quad \delta(x_2, x_4) = 17 - 3 = 14, \]
\[\delta(x_4, x_t) = 9 - 5 = 4. \]
\[\delta^* = \min\{\delta(x_0, x_2), \delta(x_2, x_4), \delta(x_4, x_t)\} = \min\{16, 14, 4\} = 4. \]
\[\mu_1 \] yolu boyunca axının qiyməti belə alındı:

Deməli, \((x_4, x_t)\) tili doymuş til oldu. Alınan şəbəkəni çəkək.
\(\mu_2 = (x_0, x_1, x_3, x_t) \) yolunu götürək:
\[
\delta(x_0, x_1) = 17 - 3 = 14, \quad \delta(x_1, x_3) = 19 - 2 = 17, \\
\delta(x_3, x_t) = 7 - 4 = 3.
\]
\(\delta^* = \min \{\delta(x_0, x_1), \delta(x_1, x_3), \delta(x_3, x_t)\} = \min \{14, 17, 3\} = 3. \)
\(\mu_2 \) yolu boyunca axinin qiyməti belə alındı:

Deməli, \(\mu_2 \) yolunda \((x_3, x_t)\) tili doymuş til oldu. Alınan şəbəkəni çəkək.

\[
\mu_3 = (x_0, x_5, x_2, x_4, x_6, x_t) \) yolunu götürək:
\[
\delta(x_0, x_5) = 31 - 4 = 27, \quad \delta(x_5, x_2) = 25 - 4 = 21, \\
\delta(x_2, x_4) = 13 - 3 = 10, \quad \delta(x_4, x_6) = 15 - 2 = 13, \\
\delta(x_6, x_t) = 11 - 4 = 7.
\]
\(\delta^* = \min \{27, 21, 10, 13, 7\} = 7. \)
Alınan şəbəkəni çəkək.
\((x_6, x_t)\) tili doymuş til alındı.
Kəsik $X'' = \{x_t\}$, $U_{x''} = \{(x_3, x_t), (x_4, x_t), (x_6, x_t)\}$. Minimal axinin qiyməti: $4 + 5 + 4 = 13$ alındı.

Çalışmalar 16

16.1. Tillərinin ötürmə qabiliyyətləri matrisi ilə verilmiş şəbəkədə giriş x_0 və çıxış x_t təpələri arasında maksimal axını tapın və minimal kəsiyi göstərin.

$$
\begin{bmatrix}
\begin{array}{cccccc}
 x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_t \\
 x_0 & - & 6 & 4 & - & - & 8 & - \\
 x_1 & - & - & 5 & 7 & - & 10 & - \\
 x_2 & - & - & - & - & 8 & 9 & - \\
 x_3 & - & - & - & - & 10 & 11 & 3 \\
 x_4 & - & - & - & - & - & 5 & 4 \\
 x_5 & - & 12 & - & - & - & - & 6 \\
 x_t & - & - & - & - & - & - & - \\
\end{array}
\end{bmatrix}
$$
2) $\begin{bmatrix}
 x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_t \\
 x_0 & - & 7 & 9 & - & - & 10 \\
 x_1 & - & - & 8 & 6 & 11 & - \\
 x_2 & - & - & - & 9 & 8 & - \\
 x_3 & - & - & - & 5 & 9 & 4 \\
 x_4 & - & - & - & - & 7 & 5 \\
 x_5 & - & - & - & - & - & 7 \\
 x_t & - & - & - & - & - & -
\end{bmatrix}$

3) $\begin{bmatrix}
 x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_t \\
 x_0 & - & 11 & 9 & - & - & 12 \\
 x_1 & - & - & 13 & 6 & - & 10 \\
 x_2 & - & - & - & 10 & 8 & - \\
 x_3 & - & - & - & 6 & 8 & 2 \\
 x_4 & - & - & - & - & 4 & 3 \\
 x_5 & - & - & - & - & - & 7 \\
 x_t & - & - & - & - & - & -
\end{bmatrix}$

4) $\begin{bmatrix}
 x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_t \\
 x_0 & - & 15 & 13 & - & - & 7 \\
 x_1 & - & - & 11 & - & 9 & - \\
 x_2 & - & - & - & 8 & 6 & 9 \\
 x_3 & - & - & - & - & 12 & 3 \\
 x_4 & - & - & - & - & 8 & 2 \\
 x_5 & - & - & - & - & - & 4 \\
 x_t & - & - & - & - & - & -
\end{bmatrix}$
5)
\[
\begin{array}{ccccccc}
& x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
x_0 & - & 17 & 14 & - & - & 16 & - \\
x_1 & - & - & - & 15 & - & 9 & - \\
x_2 & - & - & - & - & 13 & 16 & - \\
x_3 & - & - & - & - & 12 & 8 & 4 \\
x_4 & - & - & - & - & - & 13 & 5 \\
x_5 & - & - & - & - & - & - & 10 \\
x_6 & - & - & - & - & - & - & - \\
\end{array}
\]

6)
\[
\begin{array}{ccccccc}
& x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
x_0 & - & 19 & 20 & - & - & 14 & - \\
x_1 & - & - & - & 16 & - & 12 & - \\
x_2 & - & - & - & - & 17 & 15 & - \\
x_3 & - & - & - & - & - & 16 & 5 \\
x_4 & - & - & - & - & - & - & 13 \\
x_5 & - & - & - & - & 10 & - & 4 \\
x_6 & - & - & - & - & - & - & - \\
\end{array}
\]

7)
\[
\begin{array}{ccccccc}
& x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
x_0 & - & 11 & 15 & - & - & 8 & - \\
x_1 & - & - & - & 14 & - & 13 & - \\
x_2 & - & - & - & - & 10 & 12 & - \\
x_3 & - & - & - & - & - & 13 & 6 \\
x_4 & - & - & - & 17 & - & 16 & 7 \\
x_5 & - & - & - & - & - & 8 & - \\
x_6 & - & - & - & - & - & - & - \\
\end{array}
\]
8) \[
\begin{bmatrix}
 x_0 & x_1 & x_2 & x_3 & x_4 & x_i \\
 x_0 & - & 15 & 16 & - & - & - \\
 x_1 & - & - & 13 & 14 & 7 & \\
 x_2 & - & - & - & 8 & 12 & \\
 x_3 & - & - & 18 & - & 13 & 4 \\
 x_4 & - & 6 & - & 7 & - & 5 \\
 x_i & - & - & - & - & - &
\end{bmatrix}
\]

16.2. \(f(u) \geq c(u) \) şərti daxilində verilmiş şəbəkədə minimal axını tapın.

1)

2)

3)

230
8)

9)

10)

11)

232
12)
Ədəbiyyat

5. Судоплатов С.В., Овчинникова Е.В. Элементы дискретной математики. Новосибирск, ИНФРА-М, НГТУ, 2002.
Ələddin Əsəd oğlu Hüseynov
Məmməd İbad oğlu Seyidov
Vaqif Məmmədəli oğlu Məmmədov

Qraflar nəzəriyyəsi

Dərs vəsaiti
Yığılmağa verilmişdir 12.05.2018
Çapa imzalanmışdır 13.06.2018
Formatı 60×84 1/16.
Fiziki çap yarıçapı 14,75.
Sifāriş 537. Sayı 500

«MBM» şəirkətinin mətbəəsində çap olunub